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1 Introduction

1.1 Purpose of this book

The book is designed for students in statistics at the master level. It focuses on problem solving in the
field of statistical inference and should be regarded as a complement to text books such as Wackerly et al
2007, Mathematical Statistics with Applications or Casella & Berger 1990, Statistical Inference. The author
has noticed that many students, although being well aware of the statistical ideas, fall short when being
faced with the task of solving problems. This requires knowledge about statistical theory, but also about
how to apply proper methodology and useful tricks. It is the aim of the book to bridge the gap between

theoretical knowledge and problem solving.

Each of the following chapters contains a minimum of the theory needed to solve the problems in the
Exercises. The latter are of two types. Some exercises with solutions are interspersed in the text while
others, called Supplementary Exercises, follow at the end of the chapter. The solutions of the latter are
found at the end of the book. The intention is that the reader shall try to solve these problems while
having the solutions of the preceding exercises in mind. Towards the end of the following chapters there
is a section called ‘Final Words’ Here some important aspects are considered, some of which might have

been overlooked by the reader.

1.2 Chapter content and plan of the book

Emphasis will be on the kernel areas of statistical inference: Point estimation — Confidence Intervals —
Test of hypothesis. More specialized topics such as Prediction, Sample Survey, Experimental Design,
Analysis of Variance and Multivariate Analysis will not be considered since they require too much space
to be accommodated here. Results in the kernel areas are based on probability theory. Therefore we
first consider some probabilistic results, together with useful mathematics. The set-up of the following

chapters is as follows.

o Ch.2Basicpropertiesofdiscreteand continuous (random) variablesare considered and examples
of some common probability distributions are given. Elementary pieces of mathematics are
presented, such as rules for derivation and integration. Students who feel that their prerequisites
are insufficient in these topics are encouraged to practice hard, while others may skip much
of the content of this chapter.

o Ch. 3 The chapter is mainly devoted to sampling distributions, i.e. the distribution of quantities
that are computed from a sample such as sums and variances. In more complicated cases
methods are presented for obtaining asymptotic or approximate formulas. Results from this

chapter are essential for the understanding of results that are derived in the subsequent chapters.
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o Ch. 4 Important concepts in point estimation are introduced, such as likelihood of a sample
and sufficient statistics. Statistics used for point estimation of unknown quantities in the
population are called estimators. (Numerical values of the latter are called estimates.) Some
requirements on ‘good’ estimators are mentioned, such as being unbiased, consistent and having
small variance. Four general methods for obtaining estimators are presented: Ordinary Least
Squares (OLS), Moment, Best Linear Unbiased Estimator (BLUE) and Maximum Likelihood
(ML). The performance of various estimators is compared. Due to limited space other estimation
methods have to be omitted.

o Ch. 5The construction of confidence intervals (ClIs) for unknown parameters in the population
by means of so called pivotal statistics is explained. Guide lines are given for determining the
sample size needed to get a CI of certain coverage probability and of certain length. It is also
shown how CIs for functions of parameters, such as probabilities, can be constructed.

o Ch. 6 Two alternative ways of testing hypotheses are described, the p-value approach and the
rejection region (RR) approach. When a statistic is used for testing hypotheses it is called a test
statistic. Two general principles for constructing test statistics are presented, the Chi-square
principle and the Likelihood Ratio principle. Each of these gives raise to a large number of
well-known tests. It’s therefore a sign of statistical illiteracy when referring to a test as the Chi-
Square test (probably supposed to mean the well-known test of independency between two
qualitative variables). Furthermore, some miscellaneous methods are presented. A part of the
chapter is devoted to nonparametric methods for testing goodness-of-fit, equality of two or

more distributions and Fisher’s exact test for independency.

A general expression for the power (ability of a test to discriminate between the alternatives)
is derived for (asymptotically) normally distributed test statistics and is applied to some

special cases.

When several hypotheses are tested simultaneously, we increase the probability of rejecting a
hypothesis when it in fact is true. (This is one way to ‘lie’ when using statistical inference, more
examples are given in the book.) One solution of this problem, called the Bonferroni-Holm

correction is presented.
We finally give some tests for linear models, although this topic perhaps should require their

own book. Here we consider the classical Gauss-Markov model and simple cases of models

with random coeflicients.
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From the above one might get the impression that statistical testing is a more ‘important’ in some sense
than point and interval estimation. This is however not the case. It has been noticed that good point
estimators also work well for constructing good CIs and good tests. (See e.g. Stuart et al 1999, p. 276.) A
frequent question from students is: Which is best, to make a CI or to make a test? A nice answer to this
somewhat controversial question can be found in an article by T. Wonnacott, 1987. He argues that in
general a Cl is to be preferred in front of a test because a CI is more informative. For the same reason he
argues for a p-value approach in front of a RR approach. However, in practice there are situations where
the construction of CIs becomes too complicated. Also the computation of p-values may be complicated.
E.g. in nonparametric inference (Ch. 6.2.4) it is often much easier to make a test based on the RR approach
than to use the p-value approach. The latter in turn being simpler than making a CI. An approach based

on testing is also much easier to use when several parameters have to be estimated simultaneously.

1.3 Statistical tables and facilities

A great deal of the problem solving is devoted to computation of probabilities. For continuous variables
this means that areas under frequency curves have to be computed. To this end various statistical tables

are available. When using these there are two different quantities of interest.

- Given a value on the x-axis, what is the probability of a larger value, i.e. how large is the area
under the curve above the value on the x-axis? This may be called computation of a p-value.
- Given a probability, i.e. an area under curve, what is the value on the x-axis that produced the

probability? This may be called computation of an inverse p-value.

Statistical tables can show lower-tail areas or upper-tail areas. Lower-tail areas are areas below values
on the x-axis and upper-tail areas are areas above. The reader should watch out carefully whether it is
required to search for a p-value or an inverse p-value and whether the table show lower-or upper-tail
areas. This seems to actually be a stumbling block for many students. It may therefore be helpful to
remember some special cases for the normal-, Student’s T-, Chi-square- and F-distributions. (These will
be defined in Ch. 2.2.2 and Ch. 3.1.) The following will serve as hang-ups:

- In the normal distribution the area under curve above 1.96 is 0.025. The area under curve
below 1.96 is thus 1-0.025=0.975.

- In Student’s T distribution one needs to know the degrees of freedom (df) in order to determine
the areas. With df = 1 the area under curve above 12.706 is 0.025.

- In the Chi-square distribution with df = 1 the area under curve above 3.84 ~(1.96)* is
2-0.025=0.05.

- In the F distribution one needs to know a pair of degrees of freedoms sometimes denoted
(numerator, denominator) = (f}, f,). With f, =1= f, the area under curve above 161.45
~ (12.706)*is 0.025.
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Calculation of probabilities is facilitated by using either statistical program packages, so called ‘calculators’

or printed statistical tables.

Statistical program packages. These are the most reliable ones to use and both p-values and
inverse p-values can easily be computed by using programs such as SAS or SPSS, just to
mention a few ones. E.g. in SAS the function probt can be used to find p-values for Student’s
T distribution and the function tinv to find inverse p-values. However, read manuals carefully.
‘Calculators’. These have quite recently appeared on the internet. They are easy to use
(enter a value and click on ‘calculate’) and they are often free. Especially the calculation
of areas in the F-distribution may be facilitated. An example is found under the address

http://vassarstats.net/tabs.html.

Printed tables. These are often found in statistical text books. Quality can be uneven, but
an example of an excellent table is the table over the Chi-square distribution in Wackerly
et al, 2007. This shows both small lower-tail areas and small upper-tail areas. Many tables
can be downloaded from the internet. One example from the University of Glasgow is

http://www.stats.gla.ac.uk.

Throughout this book we will compute exact probabilities obtained from functions in the program packet

SAS. However, it is frequently enough to see whether a p-value is above or below 0.05 and in such cases

it will suffice to use printed tables.
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2 Basic probability
and mathematics

2.1 Probability distributions of discrete and continuous random variables

A variable that is dependent on the outcome of an experiment (in a wide sense) is called a random
variable (or just variable) and is denoted by an upper case letter, such as Y. A particular value taken by
Y is denoted by a lower case letter y. For example, let Y = ‘Number of boys in a randomly chosen family
with 4 children, where Y may take any of the values y = 0,...,4. Before the ‘experiment’ of choosing such
a family we do not know the value of y. But, as will be shown below, we can calculate the probability
that the family has y boys. The probability of the outcome Y =y’ is denoted P(Y = y) and since it is a
function of y it is denoted p(»). This is called the probability function (pf) of the discrete variable Y. A
variable that can take any value in some interval, e.g. waiting time in a queuse, is called continuous. The
latter can be described by the density (frequency function) of the continuous variable Y, f(y). The latter

shows the relative frequency of values close to y.

Properties of p(y) (If not shown, summations are over all possible values of y.)

1) 0<p(y) <L) p(y)=1

2) Expected value, Population mean, of Y: y=E(Y) = z - p(y), center of gravity.

3) Expected value of a function of Y: E(g(Y) = Zg(y) -p(y).

4) (Population) Variance of Y: o’ =V(Y)= Z(y —u)* - p(y)= E(Y?)— u?, dispersion around
population mean. The latter expression is often simpler for calculations. Notice that (3) is used
with g(y) = (y — 1)

5) Cumulative distribution function (cdf)otY. F(y)=P(Y < y)= p(»)+ p(y —1) +... and Survival
functionS(y)=P(Y >y)=p(y+D+p(y+2)+..=1-F(y).

Properties of f(y) (If not shown, integration is over all possible values of y.)

5
D SO0, [f0dy=LF) = [f(0)dx,S()=1-F().

2) u=EXY)= Iy - f(»)dy, centefvi)_gogravity.

3) Expected value of a function of Y, g(Y): #=E(g(¥)) = Ig(J’) Sy .

4) (Population) Variance of Y: o> =V (¥) = I(y ) fWdy =EXY?*) - pu’.

y
5) Cumulative distribution function (cdf) of Y. F(y)=P(Y < y) = I.f(x)dx and Survival function
=P(Y > y)= j £ (x)dx. e
y
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6) The Population median, M, is obtained by solving the equation F (M) =1/2for M.
One may define a median also for a discrete variable, but this can cause problems when trying
to obtain an unique solution. We illustrate these properties in two elementary examples. The
mathematics needed to solve the problems is found in Section 2.2.3.

EX 1 You throw a symmetric six-sided dice and define the discrete Y =‘Number of dots that comes up’ The pf of Y'is
obviously p(»)=1/6,y=1,..,6.

5.1 1
n Y. p(»)=). —=6 ==L
- 6

O\

=
2 E(M)=2y p(y)= %_% 6'(62+1):%
yl6
3y EX)=2 5" p) =Z %21 6(6+1)(62 6+1) 961
=l 2

8§ V(=B - i =%—@ -2
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EX2 You arrive at a bus stop where buses run every ten minutes. Define the continuous variable Y =‘Waiting time for
the next bus’ The density can be assumed tobe f(y)=1/10,0< y <10.

O\

51 1
) >.p0) =Z— ral

5 10 _
2) E(Y)=fy-f(y)dy=Iy-—dy=i{y7} i(loo 0J=5
0

10

10 2
10
1]y 1 (1000-0) 100
3) E(Y*)=|y* f(»dy=|y ‘—dy=—{—} ——(—) —
j j 10[ 3| 10 3 3
4) V(¥)=EX?) - 100 52_235
Y
(L2 M1 ~
5) F(y)_lﬁdx_ﬁ‘s"’ F(M)=10=—= M =5,

Here the median equals the mean and this is always the case when the density is symmetric around the mean.

One may calculate probabilities such as the probability of having to wait more than 8 minutes,

10
1 1 1
P(Y >8) = |—dy=—(10-8)=—
(¥ >8) Loy 10-8) =2

More generally, a, = E(Y")is the rth moment and u, = E((Y —u) )the rth central moment, r=1,2,....
A bivariate random variable Y consists of a pair of variables (Y,Y,). If the latter are discrete the pfof Y
is p(y,y,) =P, =y, NY, =y,),ie.the probability of the simultaneous outcome. Given that ¥, = y,
the conditional probability of Y, is p(yl |y2 )= P(Y1 =y |Y2 = yz).

Properties of p(y,,¥,) (If not shown, summations are over all possible values of y, and y,)

1) 031’()’1»)’2)31,22]90’1’)’2) =1.

2) Y p(ri>¥:) = p(1) D p(r1,,) = p(3,), p(3y)and p(y,) are marginal pfs.

V2 )
) i) —<|> G
K Zp(yl|y2): »2) (y) p(yy) =

5) Y, and Y, are independent if p(y1|yz )= p(y)or p(yzlyl )= p(y2) or P31, 2) = P(Y) - P(,).

6) E(g(1)-h(¥y)=>.>" ) h(y,) p(3.7,).
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7) Covariance between Y, and Y, :
o1 = Cov(1,2) = > > (3 = )2 = t12)- PO1,22) = ECOY) = .

Notice that o}, = Cov(Y,,Y,) is simply the variance of Y.

8) Correlation between Y, and Y, :

Oy

Py = ,where o} =V (Y¥;)and o; =V (Y,) Notice that —1< p,, <1.

0,0,
9) The conditional expected value = E (Y1|Y 2 = ) = zyl 'P(y1| Vs )is termed the regression
N

function. If this is a linear function of y, the regression is linear, a + - y,, where a is an

intercept and S is the slope or regression coefficient.

10) The conditional variance V(YI|Y = J’2): Z:(y1 _M\z)z .p(yl|y2):

E (Y12|Y2 =y, )— ,ulz‘z is the residual variance.

More generally, a n-dimensional random variable Y has n components (Y,,...,Y,)and the pf is
p(Vysesy,) =P, =y, N...nY, =y, ). This can represent the outcomes in a sample of n observations.
Assume for instance that we have chosen a sample of n families, each with 4 children. Define the variable
Y. = ‘Number of boys in family 7, i = 1...n. In this case it may be reasonable to assume that the number
of boys in one chosen family is independent of the number of boys in another family. The probability of

the sample is thus

P y) = p1) - p(v) = [ 20 (1a)
i=1

If furthermore each Y, has the same pf we say that the sequence (Yi )7:1 is identically and independently
distributed (iid).

Similar relations hold for n-dimensional continuous variables. For n independent variables the joint

density is

f(yl,.«.,yn)=Hf(yi) (1b)
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Linear form of random variables

Let (Yl ):.':1 be variables with E(Y)) = 1,V (Y;) = 0, andCow(Y,,Y;) = o;,. A linear form of the Y,'s

is L= ZaiYi , where the a,are constants. It is easy to show the following (Wackerly, Mendenhall
i=1

&Scheaffer 2008, p. 271)

E(L)=) a,y
i=1
n )
V(L)= Zaizaii +2 ZZaiajO'ij
i=1 I<i<j<n
I B Sweden
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Consider e.g. the case n = 3 in which case Zzaiajo-[j =a,a,0,, +a,a50,3 + a,a;0,3. We illustrate
1<i<j<3

the use of eq. (2) below.

EX3 Variance of a sum and of a difference.

v, +Y2)=[a1 :1292]2511 toy +20,, V(Y _Yz):[a1 =La, :_1]20'11 +0y =201,

o
Assume further that 0, = 0,, = o’ say.Then P12 :—122 and it follows that
o

V(Y +Y,) =207+ py) and (Y, —Y,) =267 (1- p,).

This last equation is interesting because it shows that the variance in data with positively correlated observations can
be reduced by forming differences. In fact V(Yl - Yz) —>0as P ™ 1. A typical example of positively correlated
observations is in ‘before-after’ studies, e.g. when body weight is measured for each person before and after a
slimming program.

2.2 Some distributions

Many discrete and continuous distributions have been found to be workable models for several important
practical situations. Such distributions have been termed ‘families of distributions’ or ‘distributional laws.
In this section we catalog some of these and give the basic assumptions on which they are based. We
also give means and variances and indicate important properties and applications in following examples.

When a certain variable Y follows a certain law L we use the notation Y~ L.

2.2.1 Discrete distributions

1) Y ~ Bernoulli(p).Y is a variable that takes the value 1 with probability p and 0 with probability
(1-p). The outcome Y = 1 is often termed a ‘success’ and the outcome Y = 0 is termed a ‘failure’
The pf is

p(»=p’1=p)7,y=01

with mean u = p and variance o* = p(1— p).

2) Y ~ Binomial(n, p) . The pf can be derived under the following assumptions: n independent
repetitions are made of the same experiment that each time can result in one of the outcomes
‘success’ with probability p and ‘failure’ with probability (1-p). Define the variable Y = ‘Number

of successes that occur in 7 trials. The pf is

oy n-y
p(y): p (l_p) ’y:Oﬁlﬁ"‘,n
Y
with u=npando® =np(1— p). Notice that Y = ZYI , where (Yl )?:1 is a sequence of iid
i1

variables, each ~ Bernoulli(p) . For the meaning of (HJ see Ch.2.3.5 below.
y
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3) Y ~ Geometric(p) . Assumptions: Independent repetitions are made of the same experiment
that each time can result in one of the outcomes ‘success’ with probability p and ‘failure’ with
probability (1-p). Define the variable Y = ‘Number of trials when a ‘success’ occurs for the
first time. The pf is

() =01-p) ' p,y=12,.0

with =1/ pando® = (1- p)/ p*. The survival function is S(y)=P(Y > y)=(-p)’. An
interesting property of the Geometric distribution is the lack of memory, which means that the
probability of a first ‘success’ in trial number (y+1), given that there has been no ‘successes’ in

earlier trials, is the same as the probability of a ‘success’ in the first trial. Symbolically,

P =y+1n¥>y) PY=y+) _(=p)'p_py_y)

p(Y =y+1y > y)= P(Y > y) P(Y > y) (1-p)’

4) Y ~ Poisson(1). The pf can be derived under a variety of different assumptions. One of
the simplest way to obtain the pf is to start with a variable that is Binomial(n,p) and to let
n — oo, while at the same time p — 0in such a way that 7+ p — A . In practice this means
that » is large and p is so small that the product 7 - p = A is moderate, say within the interval
(0.5, 20). The pf is

ro
p(y)=7e ,¥y=0,1,..00

with y=Aando’ = 1.

A more general random quantity is Y(¢) . This is a counting function that describes the number
of events that occurs during a time interval of length . It is called a stationary Poisson process

of rate (intensity) A and the pf is
Yy
P -3)-PL e o),
!

with £ (Y (t))= At = V(Y (t)). A can be interpreted as the expected number of events per unit

time since

t t t t

E(Mj = ; -E(Y(t))= 1. Also, V[ Y(t)j = iz V(Y ()= &-

A Poisson process can be obtained under the assumption that the process is a superposition
of a large number of independent general point processes, each of low intensity (Cox & Smith
1954, p. 91).
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Let X(s)and Y(¢) be two independent Poisson processes of rates A, and 4, , respectively, e.g.
number of road accidents during s and ¢ hours on roads with and without limited speed. We
are interested in comparing the two intensities in order to draw conclusions about the effect of
limited speed on road accidents. One elegant way to do this is to use the Conditional Poisson
Property (ct. Cox & Lewis 1968, p 223)

Ay -t
The conditional variable (Y(t)|X(S) +Y(t) = n) ~Binomial(n, p = ——————) (3)
Ay S+, -t

The problem of comparing two intensities can thus be reduced to the problem of drawing

inference about one single parameter. Notice that if A, = A, thenp=¢{s+7).

The discrete variable Y(#) that counts the number of events in intervals of length ¢ is related
to another continuous variable that expresses the length between successive events. (Cf. the

theorem (4) in Section 2.2.2.)
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5)

6)

Y ~. (Discrete) Uniform(N). The pf is

1
=—,y=L12,...,n
p(y) Y

with gz = (N +1)/2and o> = (N* —1)/12. The distribution put equal mass on each of the
outcomes 1,2,...,N. A typical example with N = 6 is when you throw a symmetric six-sided

dice and count the number of dots coming up.

(Yl yeees ¥ ) ~ Multinomial(n, P1>--+> Py ). Thisis the only example of a discrete many-dimensional
variable that is considered in this book. The pf is derived under the same assumptions as for a
Binomial variable. However, instead of two outcomes at each single trikal, there are k mutually
exclusive outcomes 4, ,..., 4, where the probability of 4, 1s p, and Z p; =1. The pf of the

i=1

variables Y, ='Number of times that 4, occurs',i =1,...,k is

n! R
ﬁplyl -+ pi* with Zyi =n
Yir Ve i=l

PV Vi) =

Verify that k = 2 gives the Binomial distribution. Here y, =FE(Y,)=n-p,,
o, =V({¥)=n-p(I-p)ando, =Cov(Y,,Y,)=-n-p,p,,i#j.

EX 4 Let Y be the variable ‘'Number of boys in a randomly chosen family with 4 children’ This can be assumed to be
Binomial(n, p) with n =4 and p = 53/103 = 0.516, the latter figure being obtained from population statistics in the
Scandinavian countries (106 born boys on 100 born girls). By using the pf in (2) above one gets

p(0) =

p(2)=

p(4) =

These probabilities are very close to the actual relative frequencies. However, it should be kept in mind that
calculations have been based on crude figures and the results may not be true in other populations. E.g. if both
parents are smokers the proportion born boys is only 0.451 or 82 born boys on 100 born girls (Fukada et al 2002,

p. 1407).

4 4

0 (53/103)°(50/103)* = 0.056, p(1) =(J(53/103)1(50/1o3)3 =0.235,
4 2 2 4 3 1

5 (53/103)*(50/103)* =0.374, p(3) = 3 (53/103)*(50/103)" = 0.265,
4 4 0

A (53/103)*(50/103)° = 0.070
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EX 5 In Russian roulette a revolver with place for 6 bullets is loaded with one bullet. You spin the revolver, direct

it towards your head and then fire. Define the variable Y ='Number of trials until the bullet hits your head for the
first time (and probably the last)! The variable can be assumed to have a Geometric distribution with p = 1/6. In this
case it is perhaps not that interesting to compute the probability that the revolver fires after exact y trials, but the
probability to survive y trials. From the expression above in (3), Ch. 2.2.1, we get the survival function

SyY)=PY>y)=(5/6)",y=12,..0

A few values are:

y 1 2 3 4 5 6

Sfy) | 083 | 069 | 0.58 | 048 | 0.40 | 0.33

The median is somewhere between 3 and 4 trials which implies that after 3 successive trials most of the candidates
will have been hit by the bullet. Russian roulette has been a motive in several films such as “The Deer Hunter”, “The
Way of the Gun” and “Leon’, just to mention a few ones. The next time you are watching such a film you should have
the table above in your mind.

EX 6 Let X(s) be a Poisson process of rate ﬂ,X representing the number of road accidents on a road segment.
During 12 months it is noticed that there has been 18 accidents, so that /1)( may be put equal to 18/12 = 1.5. One
can now calculate the probability of several outcomes such as

- Atleast one accident in s months, P(X(S) > 1) = ZP(X) =1-p(0)=1-e"",
which tends to Twith increasing values of s. x=1

- Atleast one accident in 1 month, P(X(l) > 1) =1-e¢"°=0.777.
- Atleast two accidents in 1 month, P(X(l) > 2) =1-p0)—p(D=1-e""-1.5-¢"° =0.442.
- Atleast two accidents in one month given that at least one accident has occurred,

P(X()=21nX(1)>2)
P(X(1)>1)

P(X(1)>2
P(X(1)>1

= [The intersection of the two events in the numerator

Pxy>2x)>1)=

0.442
0.777

=0.569.

is simply X'(1) > 21]=

)
)

EX7 Assume that speed limits are introduced on the road segment in EX 6 and after this one observe 3 accidents in 3
months. The rate of accidents has thus decreased from 1.5 to 1.0 per month. Does this imply that restricted speed has
had an effect on accidents, or is the decrease just temporary? We will later present some ways to tackle this question
(Cf. Ch. 6), but for the moment we just show how the problem of comparing two rates can be reformulated.

Let Y(¢) be the Poisson process of accidents during time t after the introduction of speed limits and let the rate be

ﬂ.Y . According to formula (3) in this section the variable (Y(3)‘X(12) +Y(3) = 21) is Binomial (n,p) with n =21 and

p=4, 3/, 12+ 4, -3).1f A, = A, then p=1/5, to be compared with the observed proportion 3/21 = 1/7.

Download free eBooks at bookboon.com



http://bookboon.com/

n! i
N Y2 Y3 The
yl!yzlyﬂpl Py D;

EX 8 (Ylez’Ys)is a Multinomial variable (n,pl,pz,p3).The pfis p(¥,,¥,, V3 =

outcomes are often referred to as cell frequencies.

The mean and variance of Y1 - Y2 are

E(Yl _Yz):,ul —H, =np, —hp, =n-(p1 _pz)
V(Y -Y,)=0, +0, 20, =np,(1— p,)+np,(1— p,) = 2np, p, = (After some
re-arrangements] = - (p, + p,)(1=(p, + p,))

22.2 Continuous distributions

A convenient way to summarize the properties of a continuous distribution is to calculate the (symmetric)
variation limits (c,,c, ) . These are the limits within which a certain percentage of all observations will fall.
E.g. the 95% limits are obtained by solving the two equations P(Y < ¢,) =0.025 and P(Y >c¢,)=0.025
for ¢, and ¢, . (Cf. EX 9-EX12.)

1. Uniform distribution on the interval [a,b,Y ~ Uniform|a,b].

1 0,y<a
Density f(»)= (b—a) ,asy<b, cdfF(y)= ?b;_a;,agygb
—a

0, otherwise Ly>b

It is easy to show that u=(h—a)/2and o =(b—a)* /12.
2) Gamma distribution, Y ~ Gamma (A, k)

This is a class of distributions that is closely connected with the Gamma function I'(k) (Cf.

Section 2.3.5.). The general form of the density is

ﬂ‘k k-1 _-Ay
=— e, y>20,4>0,k>0.
T =7 " y
Notice that the integral of the density over all values of y is 1, a property that can be used in

computations. Two important special cases are:

- Exponential distribution, k = 1, Y ~Exponential (A1) ,with density /' (y) = Ae
- Chi-square distribution with n degrees of freedom (df) A =1/2andk =n/2,
2
Y~x (),

k-1 i
The cdf can only be expressed explicitly if k is a positive integer, F(y) =1- Z(/%fy)e*’l‘y .

!
-0 b
In the exponential case we thus get F(y) =1—e *?. An important theorem that links the

Downloa&ifaererart disssibupden denthe Poisson process in Section 2.2.1 is the following:
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Let (Xi ) be a sequence of times-between-successive events. Then we have the identity

1) Each X, ~ Exponential (1)

2)The X, are independent )

Y(¢)is a Poisson process of rate 4 < {

This gives us a simple clue to determine whether a given sequence of events follow the Poisson
law or not: (1) Make a histogram of X, and compare it with the Exponential density, (2) Make
a plot of each interval length versus the length of the following interval ( X, versus X, ) and
compute the correlation. For more refined methods the reader is referred a book by Cox &
Lewis 1966, p. 152.

1 I'(k
For Y ~Gamma (A,k) we have i = k/ Aand 6 = k/ A*. More generally E(Y") = F—(F(Z)r)

which holds for r =K -2, -1, 0, 1, 2K. Special case: k=1=a, =E(Y")= %

The following theorem makes it possible to calculate areas under the Gamma density by using

tables for Chi-square variables that are found in most textbooks:

Y ~ Gamma(A,k) = 2AY ~ y*(2k) ®)

An application of this is given in EX 11 below.
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3) Weibull distribution, Y ~W(«, A ). This has the density

fM=a-A-ye* y20,a>0,1>0

2
T+l ., T1+2/e)-T(+1/a)
/11/0! /12/0!

Here u . The cdf is F(y)=1-e**". This

distribution is obtained from the relation ¥ = X“, where X ~ Exponential( 4 ).
Applications can be found in survival analysis and reliability engineering.

4) Normal distribution, Y ~ N(4,07) has the density

1 _O-w)’

f()=————=e > ,—0<y<om,
2702

where ¢ and 0% is the mean and variance, respectively. A standard normal variable is obtained
by putting = 0and o> =1. The latter is denoted Z ~ N(0,1) and will be used to compute
areas under the normal density in a way that is described in EX 12 below. Notice that

Z =(Y — p)/ o, the transformation is called standardization.

The normal distribution can be obtained as a limiting distribution in several ways. Some of
these are listed below in (a) to (c), where the one in (a) is formulated as a theorem due to its
importance. A proof of (a) can be found in Casella & Berger 1990, p. 217. A proof of (c) can
be found in Cramer 1957, p. 250.

a) Central Limit Theorem (CLT) . Let (Yl ):.l:l be a sequence of independent and identically distributed (iid) variables

with mean x and variance o> . Then the cdf of the standardized variable

iK—E[fY,«] SY-nu
Z _ i=1 i=1 — i=1

= tends to the Cd (0] Z ~ N(O,l) as n > 0.
( = i\J
i=1

\/1/1-0'2 \/0‘2 /n
This is denoted Z, —2—> Z,as n — oo, (6)

n

Y —np D

\np(1-p)

c) If Y(¢)is a Poisson process with rate Athen Z(¢) =

b) If Y ~ Binomial(n, p)then Z, =

Z ~ N(0,]),asn — o0

Y(t)- At
Jar

alternatively, with t = 1Z ()—2>Z ~N(0,])as A - .

—L2 57 ~NQO,)as L%, or
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Comments

- The CLT was first formulated and proved by the French mathematician Laplace about 1778
(exact year is hard to establish). Notice that it is the standardized variable that has a normal
distribution as alimit. In some textbooks you may find expressions like ‘ Y hasa limiting Normal
distribution with mean # and variance o* /n’, But this is not true since the distribution of Y
tends to a ‘one-point’ distribution at g with variance zero.

- Asyoumight suspect, the resultin (b) is simply a result of the CLT since Y ~ Binomial(n, p) can
be expressed as ¥ = Z Y; where the Y;are iid with a Bernoulli distribution. However, this result
was published earlie?lthan that of the CLT, in November 12, 1733 by the French mathematician
de Moivre and it seems to be the first time that the formula of the normal density appears.

- Further results were later obtained by the German mathematician K.E Gauss (1809) and
the Russians Markov (1900) and Liapuonov (1901). It has been found that the limiting Z
-distribution exists under less restricted assumptions than mentioned in (a) above.

- Many distributions are related to Z ~N(0,1), e.g. Z L ;(2 .

- If Y, ~ N(y;,07) then L= ZaiY[ ~ N with mean and variance given in (2), Ch. 2.1.
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5) Laplace distribution, Laplace’s first law or the double Exponential distribution, Y~ L( f,b). The
density and cdf are
Lo (1/2)- e% <b
f)=ye P and F(y)= wn
1-(1/2)-e b ,y2b

With mean zand o* = 2b°.

This distribution and its generalizations to non-symmetric casas hasimportant applications in engineering

and finance.

EX 9 Assume that waiting times are distributed U[0,b]. Compute the mean and the median waiting time and also the
95% variation limits.

y:b/Z,F(M):%:(Put)zl/ZjM:b/2.

95 % variation limits are obtained from: P(Y < ¢,) = F(¢,) = %1 = (Put) = % = ¢, =0.025b,

C
P(Y >c¢,)=1-F(c,) =1 —72 = (Put) =0.025= ¢, = 0.975b . The 95 % variation limits are thus (0.025b,

0.975b). E.g. if a bus runs every 20 minutes from a bus stop, 95 % of the waiting times will range from 0.5 to
19.5 minutes.

EX 10 Intervals between arrivals to an intensive care are distributed Exponential(1). Compute the mean and
median interval and give the 95% variation limits.

In(2) _ 0.67
)

u=1/A, FM)=1—-e*™ =(Put)=1/2=e*" =1/2= 1-M =1n(2),s0 M =

P(Y <¢))=1-e "% =(Put) = 0.025= ¢+ =0.975= ¢, = -In(0,975)/ A = 0.025/ 1.
P(Y >c¢,)=1-P(Y <c,)=e " =(Put) = 0.025 = ¢, =—In(0.025)/ A ~3.69/ 1
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EX 11 Assume that service times (minutes) for a customer at a cash machine are distributed Gamma(4 = 2,k = 2).
Determine the mean and median service times and give the 95 % variation limits for the service times.

u=k/A=2/2=1.

P(Y < M) = [Notice the trick] = P(2AY < 2AM) = P(*(4) < 2AM) = (Put) =1/2. From a table of the Chi-
square distribution we get 2AM =3.36 = M =3.36/4 = 0.84.

P(Y <¢,)=P(Q2AY <24c,) = P(y*(4) < 2Ac,) = (Put) = 0.025 . The same tables gives 2\c, =048 so

¢,=012. P(Y >¢,)=PQ2AY >21c,) = P(x*(4) > 2Ac,) = (Put) = 0.025.. From this 2Ac, =11.14, s0
¢, =2.79.

In this example we have used the theorem in (5)

EX12 Y ~ N(u,0?). Determine the 95 % variation limits for ¥ .

P(Y < ¢;) = [Notice the trick]= P(L P S 7”} = P[Z <A ”j = (Put) = 0.025 =
o o o

G H
o

=-1.96 = ¢, = u—1.960 Similarly we get ¢, = 1 +1.960

2.3 Mathematics

Some mathematics will be needed when solving problems in statistical inference. Here we consider a

few results that will be needed.

2.3.1 Functions of a single variable

A function y = f(x) maps one set of x- values on one set of y- values. The function is called one-to-one
if only one x- value correspond to a y- value. In such a case one can obtain the reversed map, the inverse
functionx = ' (y). Consider the function y = x*, — 00 < x < 00, which maps values along the whole
x- values on the positive y- axis. It is not one-to-one since e.g. both x = -1 and x = 1 gives y =1. On the

other hand, y = x*, 0 < x < oo is one-to-one with the inverse function x = \/; .
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Some simple functions

Straight line, y = a + b - x, a is the intercept and b is the slope.

Exponential,y = ab™. With a = 1 and b = e~ 2.7182, y = " having the following properties:
e’ = l/ex, e’ e = htn . (@Xl )Xz =e""

Potense, y = ax’

Logarithmic (natural), y =In(x)having the following properties: In(0) — s ,In(1) =0,
In(e) =1,

In(x,x,) = In(x,) + In(x,) In(x,/x,) = In(x,) —In(x,) In(x") =bIn(x) In(e*) = x . If

y =In(x) then e’ = x

Logistic (S-curve), y =€/ (1 + €), where I=a + b - x.

Linearization of non-linear functions

y =ab”. Taking logarithms on both sides gives y'=1In(y) = In(ab*) = In(a) + xIn(b) =
a'+b'x . So x plotted against In()) gives a straight line.

y=ax". y'=1n(y) = In(ax") = In(a) + bIn(x) = a'+bx". So, In(x) plotted against In(y)
gives a straight line.

y=e'l(l+e"),withl =a+b-x.Now y/(1-y) =€’ ,s0 y'=In(y/(1-y))=I=a+b-x
and thus a plot of x against In(y /(1 — y)) gives a straight line.
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232 Sums and products

n

The sum of x,....,x, = x, +..+x, = in . The x, are terms Sometimes we drop the lower or upper
i=1

index in the summation sign if they are obvious. The product of Xy peren X, =X, 50X, = H X, - The x;,

are now termed factors.

Some rules

i=1

2
- (x, +x,)* =x +x; +2x,x,. More generally: (Zx,) = Zx,z +2 inxj . Notice that

i=1 1<i<j<n

the last sum contains n°> — 7 terms of the form XX

- - Xi — 5% ... p% — ZX! h X ) —
e’ =e e" =e , e = xi

i=1

n n n n
n o
- Za-xi :ale. , | |a~xi =aqa I |xi , where a is a constant.
i=1 i=1 i=1 i=1

=

_ 1 n n n
EX13 X = —ZXi is termed the arithmetic mean. Obviously Z(x[ -X)= le. -
nis

=
Il

i=1 i=1

n
in -n-x=0.
i=1 n
Let a be an arbitrary constant. Then » (x, —a)” is minimized if a = X.
i=1

n

Proof: Zn:(xl. —-a)’ = [Notice the trick] = Z((xi -X)+(x- a))2 = Zn:(xi -%) + Zn:()_c —a)’ +

i=1

ZZ(xi -X)(x—a)= Z(xi -x) +n(x-a)’ +2(x - a)z (x; = X), where the last term is zero.
) it

i=1

2
n n n n 1 n
=2 _ 2 =2 A= _ 2 1
Notice that Z(xi —X) = Z:‘xi tnex ZXZI:XI' - Z}xi n (Z}xij .The latter expression is often simpler
to use in calculations. . . . .

233 Derivatives

The derivative of y = f(x)with respect to x is the limit f'(x) = lim(f(x + h) - f(x))/h ash—0.

Other notations for a derivative are y', d—y, ——or D_f. Rather than having to calculate the limit it is

X dx
easier to use the following rules.
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Derivation rules

1) Special functions

VACON a+bx x" e e In(x)

S'(x). b bx"! e’ g'(x)es™ 1/x

2) f(x)=g(x)th(x)= f'(x)=g'(x) £ h'(x)
3) f(x)=g(x)-h(x)=> f'(x) = g'(x)- h(x) + g(x) - h'(x)
4) f(x)=gx)/h(x)= f'(x)=(g'(x) h(x)— g(x)-h'(x))/ 7’ (x)

5 f(x)= g(h(x)) = f'(x) = h'(x)g'(h). This is a very useful rule that is demonstrated in

EX 14 below.

EX 14 f(x) = In(Bx +1). Put 2(x) = 3x + 1and g(%) = In(h)in (5) above, with i'(x) = 3,
g (h)=1/h Then f'(x)=3/(3x+1)

F(x)=2x.Put h(x) = 2xand g(h) =vh = B>, with ' (x) =2, g'(h)=1/2-h""? =ﬁfhen

b

wore

d d
y= (x — 0)2 . d_y = 2()6 - a), d_y = (—1) : Z(X - Cl) = 2(0 - X).The function y can be considered as a
X a

f'(x) =

function of either x or a.

y=Y (x,—a). j—yz [There is just one x, | = 2(x, — a), ;’l =3 (-)-2(x, —a)=2) (a-x,)
i=1 X, a o

i i= i=1

Two important theorems about extreme values

- If f(x)has alocal maximum (max) or minimum (min) at x = x, then this can be obtained

by solving the equation f'(x) =0for x = x,. Furthermore, from the sign of the second

derivative f''(x), we draw the following conclusions:

>0 = f(x)hasalocalminatx = x,

< 0= f(x)hasalocal max at x = x,

f"(xo){

- If f(x)>0then f(x)has a local max or min at the same x- value as ln( f (x))

2
EX 14 Does the function f(x) = e D" have any max/min-values? Since f(x) > 0 we prefer to study the
simpler function z(X) = ln(f(X)) =—(x—1)" Since z'(x) =-2(x—-1)=0 = x, =1, this must be
a value of interest. Now, z'"(x) = =2 < 0, from which we conclude that the function has a local maximum at

x=1.
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234 Integrals

b
The (Riemann) integral I Jf(x)dx is the area between a and b under the curve f(x).

Integration rules

1) J- f(x)dx = [F (x)]i:l; = F(b) — F(a)where Fis a primitive function to f. Since F'(x) = f(x)

we can use the derivation rules above to find primitive functions.
b b b
2) I(g(x) + h(x))dx = Ig(x)dx + Ih(x)dx

3) j g(x)- h(x)dx = [G)h(W)]™ - j G(x)h'(x)dx (Partial integration)
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2

x=1
1 1
EX15 [(1-x)dr=|x—"—| =1-——(0-0)=—.
j( x)dx = {x ZL S -(0-0)=—
1 172 ¥
j ! j A2ge - | X —2-0=2.
0 x 1/2 -0

— — Jx—>00 _
Ie “dx = [— e ]X:O = —0—(—e") = 1. An area under an infinitely long interval can thus be finite. This is an
0 . Lo . . s .
example of a mathematical paradox since it would imply that we could paint an infinitely long fence, having an

exponential shape, with a finite amount of paint.

235 Some special functions and relations

Let n be any of the integers 0,1,2,.... Then n! (‘n faculty’) equals 1 forn =0and 1-2---n for n >0.

| !
The combination operator o™ E.g. > = > =
x) xl(n—x)! 2) 213

Some series

Z”:i n(n+1) Z _n(n+1)2n+ 1)

P 2 6
- Geometrchx Z ——, provided that -1< x <1.
i=0 i=0 - X

- Binomial 2(’?}%”’- =(a+b)"
=\

l

- Exponential Z— =

101

- Taylor Let £ (a)be thei: th derivative of f(x)computedat x = a with £ (a) = f(a)

_Then f(x)= z(’“ ay

£ (a). In practice this may be used to approximate f(x)by a

polynomial. E.g. f(x) = f(a)+(x—a)f'(a)+

approximated by a Taylor polynomial of order 2 about a.

%f”(a) . In this case f'(x) has been

EX 16

08 =808 1 5(8 8
L i o__ - 1= . =|Puta=1=b|=(1+1D°= ]
;0.8 ;0.8 0.8 03 1=4 ZO:U [Put a |=(1+1)*=256

Let 0<p<1andcons1der2[ljp (1- p)”_i =(p+1-p)' =

i=0
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Gamma function

For any p, define the Gamma function I'(p) = pr “le " dx. Tables of this function can be found in
Standard Mathematical Tables. Tables can also be poroduced by using program packages such SAS, SPSS or

Statistica. The behavior of the function is quite complicated but we will only need the following properties:

- '(p+1)=p-T'(p)
- I'(p+)=plifp=0,1,2,...

Cauchy-Schwarz inequality

Let x; and y; be real numbers. Then Zx Y (z XZyl

24 Final words

Notice the difference between a discrete and a continuous variable when calculating probabilities. For
a continuous variable Y the probability P(Y = y)is always 0. This implies that P(Y > y)=P(Y > y). On
the other hand, for a discrete variable, P(Y > y = P(Y = y))+ P(Y > y) .

The population median M is a value such that F(M)=1/2 and nothing else. The sample median m is
obtained by ranking the observations in a sample and to let m be the observation in the middle, or the

average of the observations in the middle. m may be used as an estimate of M.

In Ch. 2 we only considered discrete bivariate distributions. Continuous bivariate distributions are
treated analogously. The essential difference is that all summation symbols in properties (1)-(10) are

replaced by integrals.

The reader is encouraged to use the summation symbol le. rather than x + ... + x_and the product
n i=1
symbole rather than x - ... - x . In the book we will use alternative symbols for division. To save

i=1
space we write a/b instead of £ A typical example is a—/b.
b cld+el f
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3 Sampling Distributions

Data consist of observations y, ...,y, (numerical values) that have been drawn from a population.
The latter may be called a specific sample. If we want to guess, or estimate, the value of a population
characteristic such as the population mean g one may take the sample mean y = Z »;/n. Any new
sample of n observations drawn from the population will give rise to a new set of y — values and thus
also of y . To understand this variation from sample to sample it is useful to introduce the concept of a
random sample of size n, Y, ,...,Y, . Throughout this book it will be assumed that the latter variables are

independent so that the probability of the sample can be expressed as in (1a) and (1b).

The appropriateness of taking the sample mean as a guess for z can be judged by studying the distribution
of Y and calculate the dispersion around £ . However, ¥ is just one possible function of Y,,...,Y, , and
there might be other functions that are better in some sense. Every function of the #n-dimensional variable
is termed a statistic with the general notation7 = g(¥],...,Y,) . The distribution of T is called a sampling
distribution. If the purpose is to estimate a characteristic in the population, T is called an estimator and
a numerical value of T is called an estimate, t. If the purpose is to find an interval (7},7;) that covers
the population characteristic with a certain probability it is called a confidence interval (CI). Finally, the
statistic is called a test-statistic if the purpose is to use it for testing a statistical hypothesis. In this chapter

we consider some exact and approximate results of sampling distributions..
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3.1 Some exact sampling distributions

Sum of variables

1) Y, ~ Bernoulli(p) = ZYI ~ Binomial(n, p)

i
i=1

k k
2) Y, ~ Binomial(n,, p) = ZYZ ~ Binomial[Zni,pJ

i=1 i=1

3)

=~

~ Poisson(4;) = ZYZ ~ Poisson(z /1,}

i=1 i=1

D Y~ N(poh)=a, ~ N[iaiﬂ[,fafa,?J
i=1 i=1 i=1

5) Special case with 4 =,U,0,~2 =o’and a,=1/n: Y ~N(u,0/n)

1n n i Yl n
6) Y. ~ . -~ e :
) Y, ~ Gamma(A,k,) = Z Y. Gamma[i, Z k; J, ; Gamma(n/i, Z k; J

i=1 i=1 i=1

7) Special case with k;, =1: Y, ~ Exponential(1) = ZK ~ Gamma(A,n)

i=1

k k
8) Special case with A =1/2andk, =n,/2: Y, ~;(2(ni):>ZYi ~;(2(ZniJ
i=1 i=1

Sum of quadratic forms
n

D - w)

9) ¥, ~ N(u,o) =

> ~ y*(n),or Z(Yi —u)* ~o* - y*(n). Notice that the sign ‘~’
o

i=1
(distributed as) can be treated in the same way as the equality sign.

v _ 2 = 2
10) 7 ~N(/¢,0‘2):>%~ 72W.or(f —uf ~ 220

An important theorem on chi-square distributed quadratic forms is the following theorem
(Cochran, 1934)

Cochran’s Theorem: Let Q,, O, and O, be quadratic forms such that O, = O, + O, then

2
~y*(n)and Q, ~ ¥*(n,) = Qs ~ 27 (m =) )
O ~x (n)andQ, ~ x*(n,) {Qz and Q, are independent
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EX 17 Prove the relations in (9) and (70) above.

Erll(Y,-—u)2
YN = ETE ey BT g T ),
O O' (o2

_ __ 2
< N(u,0%) = ¥ ~ N(p,0? /m) = L ~N<0J>:‘%”‘2(”‘

0'/\/;

S -7y

EX 18 Use Cochran's Theorem to show that ¥; ~ N(u,0°) = ’ZIT ~ 7 (n-1.

Yi—pu= -+ =) = D (Y- =Y =1+ Y —p)+
i=1 i=1

i=1

Z2(Yl —Y)(Y = ). Here the last term is 2(Y - ,u)z & - Y) = 0 (cf. EX 13). So,

=1 i=1

20wt 20T L (T-p)’
R = o orQ, =0, +0;

o o o

The result now follows from (9) and (10) above.

2

EX 18 (Continued) The sample variance is defined as §* = -=! 1 ~ ( g D 7°(n—1). Notice that 0,
n— n—

is a function of S”and 0, is a function of Y .Since 0, and Q; are independent it follows that S% and Y are

independent random variables. So, if we repeatedly compute S?andY in samples from a normal distribution we will

obtain a zero correlation. This may seem to be amazing since S%is functionally dependent of 7 but it illustrates

that statistical dependency and functional dependency are two different concepts.

Ratios

11) Student’s T with f degrees of freedom, T(f')

Z ~N(0)andV ~ y*(f) are independent =

A
~T
Vi )

Tables showing areas under the density of T can be found in most elementary text books.

12) Variance ratio F with f, and f, degrees of freedom, F(f,, f,)

Vi/f

7> (f)andV, ~ y*(f,)are 1ndependent:> T
2 2

~F(f1,/3)
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Tables showing areas under the density of F can also be found in elementary textbooks, but these are

more comprehensive and seldom show areas for all values of f, f,. Sometimes one can use the fact

E(fi. 1) =1 F(f3, /).

Order statistics

A random sample of n independent observations(Y;)!, can be arranged in increasing order, from
the smallest to the largest Y,y <Y, <...<Y,, . Here only the distribution of the smallest and largest
observations Y;, and Y, are considered. We also restrict ourselves to the case with continuous variables.

The distributional properties are summarized in the following theorem:

Y hascdf F, () =1-[ [ (- F, (n)=[ifally, ~ ¥Y]=1-(1-F, ()"

i=1

Inthe latter case f;, (1) = nfy ({1 = Fy ()"

Y, hascdf £, (») =[] F, () =[ifally, ~ Y]=(F, ()" (®)

i=1

In the latter casewa (») =nfy (y)(FY (y))'H.

EX 19 Determine the cdf and density of ¥, ifall Y, ~ Y ~ Exponential(4) .
F,(y)=1-e? = Fy (=1~ (ef’ly )n =l—e"7, Jr, ) = nle ™ Thus, the smallest of n

. 1
observations is Exponential(nl) , so the expected value of Y, is —
n

EX 20 Determine the cdf and density of Y(n) ifally, ~Y ~ Uniform[O,b].
n-1

" n
F(0)=3.0sysb=Fy (=5 fy, == — 0<y<bh.

n bn+l n

: = -b.
b (n+1) (n+1)

b n—1 b
n n .
E(Ym):fy‘ Z" dy=bnfy dy =
0 0

3.2 Sample moments

In Ch. 2.1 we introduce the population moments «, = E(Y") and the population central moments

u. =F ((Y - /1)2). By means of the Binomial series in Ch. 2.3.5 we can express x4 in terms of ¢, in

r . A r A N[ i
the following way. u, = E((Y —,u)’)z E{Z(FJY’ (—,u)”) = Z(}T)E(Y' =) = Z[iJai (=",
i=o \! i=o \! i=0
From this we get e.g. 11, = oco,u2 2a,u+o,u’ =a, —al .
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1S, . _ 1< .,
The corresponding sample moments are a, =— E Y witha, =Y andm, =— E (Y;-Y)". Instead of
i=1 n,, i=1

studying the properties of m_ in general we confine ourselves to §* = (—IDZ(Y,- -Y)*.
=%

The following theorem gives some properties of sample moments.

n
If (Y, )i:l are iid variables with mean A and variance &~ , then

E(a)=a, ,V(a,)=(a, —a})~ (%)
n
E(s?) =0 V(S7) = (m WU uijl (9b)
(n—1) n

The expressions for ¥ (S?)above is proved in a book by C.R. Rao 1965, p.368. Proofs of the other relations

are left as exercises for the reader in EX 21 below.
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EX21 £(a,) =1E<ZYI-’)=lZE(Y,-")=ln'ar —a -
n n n
B} =—E(Xv7)?)=[ct. ch.232]=L B> 072 23 T wyvr )=
n n

2 2
n%(ZE(Yff)+2ZZE<Y,-')E<Y,~’>)=niz[n~a2r 2l . ”)-a,a,.}ﬁmf—“’ :

n n

S0, V(a,) = E(a2)~ E*(a,) = (a, —a?)~-
n

BT -7y)=leeex3]= (X ¥ - (1) in)= X B B[ 1)*)-

[Cf. expression above] =n-a, —l(n a, +(n* —n)-aq, ): (n=1)-(a, —al)-
n

EX22Let (Y, ) beiid and distributed Exponential(1) . Determine V' (S?).
1 7! 1
=V(Y)=—andfromCh.2222) . = —with ¢, = t = —

Hy ) PP T 1= H 2

4 (4 4

Hy = Z( .jai(—,u)‘“ = aou’ — 4oy’ + 60, 1% — Aoty 1=
i—o \ !

L o 11 21 ,61 24 9

AR N S S LA L S A

Thus, from (9b) (§2) = 9 =311 _@n-6) 1
A =D A))n nn-1)2*
3.3 Asymptotic and approximate results in sampling theory

Sometimes it is not possible, or very hard, to find the exact distribution of a statistic 7, based on n
observations. In such a case one may try to find the asymptotic distribution when 7 is large. If also this
is a stumbling block one can try to find at least approximate expressions for expectations and variances

of 7, . In this section we present some ways to handle these problems.

3.3.1 Convergence in probability and in distribution

By convergence of T, in probability towards a constant c when n — o we mean that the probability for
the event that the distance between 7, and c is positive, tends to zero with increasing n. In symbols this
is expressed by T, —~— ¢, as n — o0.In practice it is often cumbersome to verify if the latter probability

tends to zero. Then one may use the following theorem.

E(T,)=candV(T,) > 0=T,—L>c (10)

By convergence in distribution (or in law) we mean that the cdf of 7, tends to the cdf of T, say.

In symbols we express this by 7 —2 7 . An example is the CLT given in (6).
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Let g be a continuous function, then the following relations hold. (For proofs the reader is referred to

Ch 2c.4 and Ch 6a.2 in Rao 1965.)

T,—t5c= g(T,)—L>g(c)
T,—L2>T = g(T,)—2—>g(T)

T,+U,—2>T+c
T, U, —2>T-c
T, /U, —25T/c

T,—2>TandU, —L>c=

Let @ be a parameter and let the variance of T, beo? (@), a function of 0 .Then

Jn(T, = 0) =LY ~ N(0,6° (0) = Vn(g(T,) - g(0)—2>x ~ N(0,[g' @ 52 (0)) (13)

We now consider applications of (10)-(13)
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R
EX 23 Let (Yl ):.l:l be iid with Y, ~ Bernoulli(p) .Put p = _ZYI =Relative frequency of ‘success’ after n trials.
n*
i=1
a) Show that p——> p,asn —> o,

This follows from (10) since [cf. 2.2.1 (1)] E(p) = pand V(p —> 0 as n—>o0.

_rd=p)

Y=
n
A P

The fact that p ——> D has been termed law of large numbers. It can be empirically verified by throwing a
thumbtack a number of times and noticing the relative frequency of the event‘tip of the tack is up’ The author, with
his particular type of thumbtack found that the frequency stabilized around p = 0.6 after about 20 trials. The outcome
is of course depending on the experimental conditions, but the reader is encouraged to repeat it, with a shoe or
a coin. It is instructive to plot the relative frequency of the event on the Y-axis against the number of trials on the
X-axis.

(p—p) D

Jp(—=p)/n

The left hand side is, after multiplication with n in both numerator and denominator,

b) Show that

Z~N(0,]),as n —> 0.

Zn:Yi —np
Vnp(l-p)

_The CLT in (6) now gives the result.

c) Show that (p=p) L 57 ~N(0]),asn —> 0.

Np(=p)/n

The left hand side can be written

(P, —p)
vp(-p)in
p.(=p)/n p )
p(l=p)/n

—L2 57~ N(O,])

The convergence in the numerator was shown in b). To prove the convergence in the denominator, notice that

b, —t—>p=g(p,)=p,0-p,)— > g(p) = p(1- p) Finally, the result follows from (12).

Comment: The difference between the expressions in b) and ¢) is that in c) we have replaced p by an estimator ﬁn in
the denominator. This will simplify calculations of confidence intervals (cf. Ch. 5). However, n in ¢) needs to be much
larger than in b), for the approximation to normality to hold. If p is not too far from 0.5, then n about 50 is sufficient
for normality in b), while n perhaps larger than 5000 may be required in c).

Jn(np-Inp) ,

Jd-p)/p

Multiplying the left hand side in b) by 4/ p(1— p) and using (10) gives \/;(f)n -p)—2>

d) Show that

Z~N(0,)

Np(l=p)-Z ~ N(0, p(1- p)). Since In xis continuous with derivative 1/x it follows from

2
(13) that \/;(lnp? ~Inp) D SN 0{“111117} -p(1-p) from which d) follows.
n dp
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EX 24 Let (Y )7:1 be iid variables with E(Y;) = gand V' (Y;) = o’ . Show that

i

n(Y — u)®
( 2#) D /%2 (1)
O- —_—
This follows because \/;(Y - ,u)) 25 7 ~ N(0,1) according to the CLT in (6). From (11)
o
= 2
n(YO-—Z,U) D 72— 2(1)

Ex 25 Let (Y, )", be iid variables with E(Y;) = zand V'(Y;) = 6% . show that
Y —
T=K)_ b7 NODasn—s
Sin

Dividing numerator and denominator by o-/\/;yields

V=) o, N(O,1)

0'/\/; , and the result follows from (12).
SiAn S
=——1
0'/\/; o

Here E—Pﬂ for two reasons: (i) V(Sz) -0 [Cf. (9b)] =8P 52
o

i) g(S*) =S /o* —LsVo? /o? =1 [cf. (1))

3.3.2 Approximations of moments

Let Y;,i = 1,2 be two random variables with means 4, and variances o, and with covariance o, . From
Taylor expansions of a function g of the variables, one can show the following. (Cf. Casella & Berger
1990, pp. 328-331.)

E(g()= g +5 8" ()07 V(2() =g ()} -7

COV(&(Yl)agz(Yz))ng (4)8'y (1) 0y (14)
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EX 26

a) Let Y ~ Gamma(A,k).Determine the approximate mean and variance of InY.

From 2.2.2 (2) we know that the mean and variance is ¢z = k/ A and o2 =k /2, respectively. The derivatives of
g(y)=Inyareg'(y)=1/yand g"(y) = —1/ y* Thus (14) gives

E(lnY)zln,u+%-(—l/y2)-0'2 =In(k/A)—1/2k, V(InY)=(=1/u) - o> =1/k.

b) (Y;);, is a sequence of iid variables, each being distributed Gamma(A,k) . Determine the approximate

mean and variance of InY, where as usual ¥ = ZYI. /n.
i=l

From 3.1 (6) we know that z Y, ~ G = Gamma(A,nk).Now, InY =In(G/n) = InG — Inn. From a) above we
get E(InG) ~ In(nk/ A) =1/ 2nk and V(In G) ~ 1/ nk . Thus,

E(nY)~In(nk/A)—1/2nk —Inn=1In(k/A)+Inn—1/2nk —Inn = In(k/A) -1/ 2nk
V(InY)=V(InG)+V(Inn)=V(InG)+0=1/nk

Notice that, as # — o0, E(InY) = In E(Y,)and V' (InY ) — 0.
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A generalization of (14) to a function of two variables is

L[ d’g(u, 1) d”g(p. 11, d’ (. 11,)
E(g(Yl,Yz))zg(ul,u2)+—(L‘2”2-of+—g e o2 428U ) o
2 dyi dy, dy,dy,

2 2
dg (4, dg(u,, dg(u,, de(u,,
V(g(Yl,Yz))z[Mj o2 +(MJ o +2[ (1 u»j[ (4 u»},%
a dy, dy, dy,

(15)

EX 27

Let Y;,7 = 1,2 be correlated variables with means ; and variances 61-2 and with covariance 0, . Derive the
approximate mean and variance of R =Y, /Y, .

We start by computing the derivatives of the function g = y, /y2 (cf. derivation rule (4) in Ch. 2.3.3).

2 2 2
ag Ldgzodig:_ﬁdg:ﬁ d’g :—L.Thus,

dyy vy dvi vy, ydy; 3 dvdy,  p3
Y o1 24,05 1 H o; oy,
E| a2+ -0+ 212 —— oy, | = 1+ =2 ——2
,) m, 2 Hy H; Hy Hy Mty
2
Y, 2 2 2 2
V[ljza‘ﬁ[-”'?}z(—‘“}fu :[Mj hﬁzz_z%
g Hy Ha Hy Hy Hy H My

3.4 Final words

Uppercase letters or lowercase letters? Uppercase letters, such as S for a sample variance, are used for
statistics when we want to stress that the quantity has a distribution. Lowercase letters, such as s>, are

used for specific values of a statistic.

The distribution of a statistic is called a sampling distribution. This is a creation by statisticians for the
purpose of drawing conclusions about parameters in the population and it has nothing to do with the
real world. Distributions that are intended to reflect facts in nature or society are called population

distributions.

Asymptotic results are obtained as a limit, e.g. when n — oo and p — 0 in the Poisson approximation of

the Binomial distribution. Approximate results just mean that they are not exact.

Knowledge about sampling distributions is the key for understanding the content in the following
chapters. It’s therefore important that you are comfortable with the properties in (1)-(10), and also of

Cochran’s theorem.

We have assumed that there is a given a random sample. This can be achieved in a verity of ways. In this
book we don't bother how the sample has been collected. For readers interested in these matters there

is a hugh amount of literature in the field. (See e.g. Scheafter, et al, 2012).
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Supplementary Exercises, Ch. 3

EX 28 Let (Yl );1:1 be iid variables.

Find cdf and density of the smallest observation Yy if ¥, ~ Uniform[O,b].

EX 29 Let (Yl ):’:1 be iid variables.

Find cdf and density of the largest observation Y(n) if Y; ~ Exponential(A) .

EX 30 Let Y ~ Binomial(n, p)and put p =Y /nsothat E(p) = pand V(p) = p(1— p)/ n.As an estimator of
V(p)one may use V(p) = p(1— p)/n . Show that the exact mean E(I}(j))) and the approximate mean obtained

from (14) are identical.

EX 31 In medical statistics one often wants to study whether a factor F causes a disease. Data from two independent
samples of sizes 71, and n, can be summarized in the following frequency table:

Diseased Not-Diseased Total
Fis present Y, n -1 n,
F is absent Y, n, -%Y, n,

Data are analyzed by comparing the Relative Risk R = D,/ p,,where p, =Y, /n,,i =1,2 with the hypothetical
value of 1, being obtained if F does not cause the disease. The variance of R is estimated by

V(R) = R ”1_Y1+”2_Y2
mY, nY,

Justify this expression by using the result in EX 27.

[Hint: Use the fact that ¥; and ¥, can be treated as two independent variables that are

~ Binomial(n;, p,),i =1,2.1

EX 32 The sample variance S?isin general unbiased for o’ (cf. (9b)). However, S is not in general unbiased for o .
Determine approximate expressions for £(.S) and V() in the following cases:

a) (Y, ):l:l are iid with expectation 1 and variance o’ with a general distribution for Y.
b) with Y, ~ N(u,0°).
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4 Point estimation

In this chapter we deal with the problem of how to estimate an unknown characteristic in the population
based on a sample of n observations. Focus will be on the estimation of parameters, such as the variance
o?in a normal distribution or the upper point b in a Uniform distribution. We briefly also consider
the estimation of functions of parameters and other quantities such as probability and cdf. First some
concepts are introduced and then we discuss some requirements on good estimators. Finally some

estimation methods are presented and evaluated.

4.1 Concepts

A statistic T is a function of the random variables Y,,...,Y, in a sample. A point estimator is a statistic
that is used to estimate the value of an unknown parameter in the population, in general denoted 0. A

point estimate t is a numerical value of T, obtained in a specific sample.

In (1a) and (1b) we introduced the concept of probability of a random sample of independent observations.
This is a function of the variable values y,,..., v, . If we instead consider it as a function of the parameter
0, it is termed Likelihood L(0) = L(y,,...,»,,0). When we want to study the long-run behavior of the
likelihood over all possible drawn samples, we use the notation L(Y,...,Y,,60) . In the latter case L is a

random variable.
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Intuitively the observations in a sample contain information about 6 in some sense. (The statistical
concept of information will be defined formally below.) E.g. given the body weights in kg, 75, 50, 90,
72, 78 of five persons drawn from a certain population, we conclude that the population mean should
be slightly larger than 70, but also that the dispersion is quite large. Sometimes all information about 6
is contained in a single statistic T. In such a case T is termed a sufficient statistic for 0. If we have found
a sufficient statistic T for 6 we can, roughly speaking, skip the original observations and only use T for

making inference about 6. The following factorization criterion can be used to find a sufficient statistic:

Assume that the likelihood L can be factorized into two parts such that

L(Y,...Y,,0) = L,(T,0) - L,(Y,,....Y,), (16)

where L, only depends on T and 6 and L, and does not depend on T and 6 but possibly only on the observations,
then Tis sufficient for 6.

More generally, T,,..., Tp are simultaneous sufficient statistics for o,,..., ep if (16) holds with T and 8 being

replaced by the corresponding vectors. The following results can be useful:

Let g be a continuous function. Then: T is sufficient for 8 = g(7) is sufficient for g(&) (17)

A sufficient statistic is unique. (There can't be several sufficient statistics for a parameter besides
functions of T) (18)
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EX 33 (Yl )?:1 are independent variables in a random sample. Find sufficient statistics in the following cases:
(See Ch. 2.2 to find the various distributions.)

a) Y, ~ Binomial(m;, p)

R NN R A0 J .
L:H(y-jp%(l_p) Ti=p= (1-p)" = .H(y).FromthlsweconcludethatthestatlstchYi|s

i=1

sufficient for p.

b) Y, ~ Geometric(p)

n

L= prrl (1-p)= pzl (1-p)" -1.Thus, ZYl is sufficient for p.

i=1 i=1

A Y, ~ Poisson(1)

n

L= H A" ot = ;y"e—ni 1 -ThUS'ZYi 1s sufficient for 1.
i=1 yl i=1

2
d) Y has the density f(y) = Zlye%y . This is called the Weibull distribution and is used as a model for life
lengths of materials.

n n n
L= HZAyie—ly? =AM 2" T: - Thus, Zle is sufficient for A ..

i=1 i=1

e) Yl ~ Gamma(A, k)

nk n k=1 ; n n
_H ykle i = A Hyi e & .1.Thus, Y, [ ¥, |are simultaneous sufficient for (ﬁ k)
ri™ I (k) g i

i=1 i=1

f) Y ~N(u,o () e Zn:(y;—ﬂ)z

Yi—H 1 _i=l . n

207 =——>———e * . Here =)t =
e @207 2L

Z(y, 1)’ Z((y, WG] =D =P DT+ Y 2y, - - p) =
i=1 i=1

i=1

Z (y; — ) +n(y — 1)?, since the last term is zero (cf. EX 13). From this it follows that
i=1

(z Y, ’Z(Yi - Y)zj are simultaneous sufficient for (y, o’ )
i1 i
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4.2 Requirements on estimators

In order for an estimator 7,, of &, based on n observations, to be considered as good one usually requires

the following:

- T,is consistent for 0. This means that the estimator converges in probability towards the
parameter, 7T, —” 50, as n — o. Remember from (10), Ch. 3.3, that a sufficient condition
for this is that £(7,) =68 and V' (7T,) — 0. Estimators that are not consistent are useless in the
sense that we do not necessarily get closer to 0 by increasing #.

- T,is unbiased for 8 which means that E(T,) = 8 . The difference E(T,)— & is the bias of the
estimator, denoted bias(6). The dispersion of 7, around @ can be measured by the Mean
Squared Error (MSE) of T, E[(Tn - 9)2]: V(T,)+ (bias(@))z )

- T, is a minimum variance estimator (MVE) which means that V(7,) is smaller than the

variance of all other estimators. A MVE is unique, so there can only be one estimator with

smallest variance.

The problem of finding a MVE is rather complicated. Before treating this we consider some results about

derivatives of the log-likelihood function. The function dinl is called a score function and it plays an

important role in statistical inference. From Eq. (1a) and Eq. (1b) it follows that

(continuous case) (19)

dcllr;L -y dln z;(eyl ,0) (discrete case) and = ZW

i=1 i=1

In order to obtain further results in the continuous case we set up the following conditions:

a) The range of y- valuesin f(, @) does not depend on 6. (20)

2
) dlnfandd In f
deo do?

are continuous.

Notice that (20) does not hold for Y ~ Uniform[O,b]with density f(y,b)=1/b,0<y <b, but for all

other densities we have considered so far.

If the conditions (a) and (b) in (20) holds then

a) E(dlnL):O (21
do
2
b I(H)zV(dlnsz—E d lr;L
do dé
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The function 1(0)is the information about 0 that is contained in a sample of size n. A solution to the
problem of finding a MVE is given by the following theorem, called the Information inequality or the

Cramer-Rao inequality after two of its discoverers who published the result in 1945.

(1 N dbias(0)

JZ
do = (If T, is unbiased) = L
1(0) 1(0)

V(T,)>

The lower limit in (22) for the variance is called the Cramer-Rao (C-R) limit. The limit may not be
attainable for a MVE, but no estimator can have smaller variance. Thus, if we have found an estimator
with a variance that equals the C-R limit, then we have found a MVE. But, if the variance of an estimator

is larger than the C-R limit, the estimator may still be a MVE. The search for a MVE in the latter case

can be complicated. Some help may be obtained from a theorem of Rao and Blackwell (Casella & Berger
1990, p. 316), but this is beyond the level of this book.
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EX 34 Let (Yl );1:1 be iid variables where Y, ~ Exponential(1)

a) Find an unbiased estimator of E(Y;) =1/ A that is based on the smallest observation ¥, . Is this estimator
consistent?

F(=1-e* > [Se®)]= F, () =1-[1-(-e? ) =1-e"" =
Y, ~ Exponential(nA) = E(Y;)) =1/nd .Thus, T, = nY,,, is unbiased forl/ 4.
b) The variance of this estimator is V(Tn) = nzV(Y(l)) = n2 % = 1/],2 which does not tend to 0 as
nA)
n — 00, so the estimator is not consistent.

¢) Find a sufficient statistic for /4 .

n A v n
L= H/ie"“’f ="e Z“ 1= ZYI‘ is sufficient for A .
i=1

i=1

d) Determine the information about A that is contained in a sample of n observations and also the Cramer-Rao
(C-R) limit.

120 dinL n d’InL n .Thus,
Zyi = dﬂ.z __12
i=1

InZ =In(A") +1 2 i 2y
nlL =In +Infe = =nlnA—-4- p— =—-
LT T T A

n n
considering the latter as a random unit we get ](ﬂ,) = _(_ _2] =—- The information increases with n
and decreases with increasing A . A A

/12

1A n

The C-R limit for any unbiased estimator of 1 is

43 Estimation methods

In this section we present some general methods to obtain estimators. Focus will be on the case with
a single parameter, but examples in the multi-parameter case are also given. It is required that the
estimators are unbiased. In this case the precision of an estimator can be measured by its variance. When
comparing estimators it is useful to use the concept of relative efficiency of an estimator 7, relative to
another 7,, RE =V (T,)/V(T,). Examples of REs for estimators produced by various methods are given

in the Supplementary Exercises of this chapter.

431 Method of Ordinary Least Squares (OLS)

The method originates from the works by the mathematicians Legendre (1805) and Gauss (1809). Many
students are familiar with this method as a way to fit a straight line to data points in the plane, but the

method can be used in more general contexts.
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Given the variables Y, with expectations E(Y;)=g;(6), i = 1l...n, consider the sum of squares

This can be

SS:Z[K —g,»(é’)]2 and determine the value of 6 that minimizes SS, say éOLS.
i=1

obtained from the solution of ass _ 0. By putting 4, into SS one gets an estimated sum of squares

SSE = Z [K -g (éOLS )]2 which can be used for estimating dispersion.

i=1

EX 35 (Yl ):.1:1 are iid with Y, ~ Poisson(2). Find the OLS estimator A, s
Sszzn:[yi —Af :>%=i(—l)'2[ﬁ —/1]=—2i[Yi ~il=0= ZY —ni=0=
i=1 i=1 i=1 i=1

n

j‘OLS:ZYi/nZY'

i=1

Here we notice that E(iOLS) = lZE(YI) = ln - A = A (Unbiased.) and V(éOLS) = %ZV(YZ) =
na n nig
1
—n-A=—.
n’ n

EX 36 (Yl ):l:l where Y, are independent with £(Y;) = fx; and V' (Y,) = o * . This model is often called ‘Linear
Regression trough the Origin with constant variance’ Here each X, is fixed while Y is random. Find the OLS
estimator of [3.

n 2 ZXY

dss <& " n . 4
S5 =2 l=pi] =7 r =2 Cxlt~ An]= 0= B3 xf = Dt = Bos =,
i=1 i=l i=1 i=1

i=1

! Zx,E(Yl) =— ! -in - px; = [ (Unbiased.)
=1

n
2 =l 2
2% 2%

i=1 i=1

E (,BOLS ) =

R 2 2 i n
i=1 i=1 2
z 2 ! Z 2 E :
i=1 i=1 =

the precision of the estimator is high, if the X, -values are large. In practice this means that if we e.g. want to estimate
the relation between Y, = Fuel consumption and x; = Speed, we should measure Fuel consumption when Speed
is high.

R 1 n 1 n 2
V(ﬂOLS )= - Z xi2 VY, = n— ) Zx-z ol = i . Notice that the variance is small, i.e.

When E(Y;) = g,(6,,....,0,), a function of several parameters, we put SS = Z[Y, - gi(Hl,...,ﬁp)]z. By

i=1
solving the equations % = 0,...,% =0 we get the OLS estimators of the parameters.
1 r
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43.2 Method of Moments

This method was suggested by the statistician Karl Pearson in the late 1800s. The approach is to equal
the sample moments ¥, S?,...to the corresponding moments in the population E(Y)=g,(6,,6,,...),
V(Y)=g,(6,,0,,..),... and solve for the parameters. The method has several deficiencies, but moment
estimates can be used when more ingenious methods require initial values in order to get iterative

solutions. An example of this is given in EX 44.

EX 37 (Yl )l”= areiid and Y; ~ Poisson(A).Here E(Y,)=A=V(Y,).

1

Obviously )CMom =Y .We might have used ):Mgm =52 , but this is less appropriate since §2 has larger variance
than Y.

EX 38 (Yl )l',':1 areiidand Y, ~ Gamma(,k).Here E(Y)=k/AandV(Y) = ki A
kia=Y (1)
Put
KA =57 (2)

yields ]QMam —Y2/82.

from which we getk = AY = 1*S? = Atom = Y /S? .The latter inserted into (1)

FULL ENGAGEMENT...

0000000000000 00000000000000000000 00

RUN FASTER.
RUN LONGER..
RUN EASIER... -
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433 Method of Best Linear Unbiased Estimator (BLUE)

The method has an unclear origin but seems to have been in use since the early 1900s. The approach is

simply to put 7, = Za,.Yi and determine the constants &, such that 7 is unbiased and has minimum
i=1

variance. This problem belongs to the field ‘minimization under restrictions’ In the examples below we

show how solutions can be obtained in a simple way by using Lagrange’s multiplier 4 .

EX 39 (Yl )7:1 are independent with E(Y;) = @ and V' (Y;) =V, . Find the BLUE of 4.

=

n

T,=>aY,=ET)=Y a,E¥)=0) a,=Pu)=0= a,=lor Y a,~1=0 (i
i=1 i=1 i=1 i=l

i=1

We now minimize Q =V (T,) + /1|:z a, — 1} = ZLllel + ﬂ{z a; — 1:| with respectto @, .

i=1 i=1 i=1

d_szaiV;+/I:O:>ai:i:£,say (ii)
da. 2v. V.

7 1 1

n '

C A 1
Putting this into (i) gives Zai = Z_ =l=A'= ~» .. which inserted into (ii) gives

i=1 i=l i
i=1 "

n

1 /v, A ;Y’/V'
4 =" | 50, Opryp ==, :
VYo Y, >,
i=1 Vz i=1 i=1
The variance is V(HABLUE)=;2-Zn:(l/Vi)2 V= !

N i1 y l/V.‘
[;1/14] Z, ,

Notice that if all variances are equal, V; =V, then 8y, = Y . Otherwise BLUE estimates can't be computed in
practice without further assumptions about the variances.
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EX 40 (Yl )?:1 are independent with E(Y;) = fx; and V' (Y;) = szip for some p.

This is the same situation as in EX 36 with the exception that V(Yl) is no longer constant, but changes with X; - Find
the BLUE of 3.

T, =Y aY, = ET,)=Y aEQY,)=BY ax,=Pu)=B=> ax,~1=0 0)
i=1 i=1 =1 i=1
V(T,) = ZaizV(Yi) =Zai202xip = O'ZZafxip :
i=1 i=1 i=1
Q:V(Tn)+/1{2aixi—l} o Za xp+/{2ax —1} ﬂ =20%ax? +ix; =0 =
i=1
Ax; "

a; = 2l 2 ”xz!_p (i
o

(ii) into (i) gives z&‘ 1=p X, = ﬂ,’zxz P=1= A= ;,which inserted into (ii) gives
n

xl.zf”
i-1
n
1-
xk-r . zxi Y,
a, = ———— BLUEfor fisthus fy ; =-———
2- 2—
le. I in L
i1 i1
1 < ( l_p)z 1 < ( l_p)z 2 p o’
V(ﬂBLUE)_ Xi V(Yz): Xi o X =

Special cases

25, :
p=0soV(Y)= o’ ﬂBLUE =-———with V(ﬂBLUE) ==

2% >
i=1 i
24 :

n P Y . n
pzl,soV(Yi)zale. :Berug = nl =TW1thV(,BBLUE)=n—.
X
2% 2%
i=1 i=1
ZYI / x; )

. i A o
p=2,50V(Y;)= 0'2xi2 Prrus = — with V(B pr) = L

This illustrates that estimators of the same parameter can differ very much, depending on which assumptions are
made about the data structure. In practice it is therefore important that such structures are investigated before the
estimation is done.
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434 Method of Maximum Likelihood (ML)

The method was developed by the English statistician R.A. Fisher in a series of papers published during
the period 1912-1922. The idea is to determine the value of 8 that maximizes the likelihood L(8), thereby
finding ‘the most likely value of the parameter given the outcomes y,,...,», > If L(@) > 0, the likelihood
has maximum for the same value as In L(#) (cf. Ch. 2.3.3). Since the latter function is more convenient

to deal with, the ML estimator éML can be found by solving the likelihood equations
dinL

=0
dinL d91.
=0 for one parameter, or : for many parameters.
do dinL 0
d19p

Some properties of ML estimators:

- The likelihood equations give the ML estimators if the conditions in (20) Ch. 4.2 holds.

- Let g(8) be a continuous function of 6. Then the ML estimator of g(8) is g(éML) .

- ML estimators are seldom unbiased for finite #, but the bias can often easily be removed.
- If a sufficient statistic T, for @ exists, then éML is a function of T, .

- ML estimators are consistent.

- Inlarge samples (n — o0) V(éML) =1/1(0), so ML estimators are MVEs in large samples.

0,, -0
- Asnoowo, M~ P 57 N(Q,).

J1/1(6)

s @book 1s probucen with iText®
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ML estimators can be MVEs, also in small samples as will be demonstrated in the Supplementary

Exercises of this Chapter.

EX 41 (Yl ):':1 are iid with Y, ~ Exponential(1) . Show that the ML estimator of A is biased and correct it for bias.
Determine the variance of the corrected estimator and compare it with the CR limit.

n

2

n -1 n
L) =™ =ae = A 2y =0
i=1

"SI =nln(A) =AYy, = 4
Zl a2

n

? n N 2 1
Ay = = —. The corresponding estimator is A,,; = - = 7

1

i=1

m

i=1
n
To compute expectation and variance, notice that Z Y. ~ Gamma(A,n) and use the expression in Ch.2.2.2(2) with
r=—land k =n: i=l
I'(n-1 n
( ) = A .. This is not unbiased, but the
(n-DI'(n-1) (n-1)

EGy) =n- 222D _[crcn23.5]=n-2

['(n)

A n—1) » n—1
bias can easily be removed by consideringA',; = ( ) g =—.

—1 1 2 )
V(,{'ML)z(n—lyV (ZYI] .Now,V(ZYi] ZE(ZYZJ _E? [ZYZJ _
i=l i=1 i=1

i=1

2T0=2) (T@-D 2_/12 T(n-2) [ tm-n Y
I'(n) T(n)y ) | (-Dn-2)L(n-2) \(n-DC(n-1)) |
7 1 SR S J 1 :
(n-D(n-2) (n-1)° (n=1)*(n-2)
R /12 2
Thus, V(A'), ) = which is larger than the C-R limit — . It can be shown that the C-R limit can't be attained
(n—-2) n

for any estimator. In fact, /i'MLis an unbiased MVE.
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EX 42 Let Y (¢) be a Poisson process of rate 4.

a)

Find an unbiased estimator of A and compute the variance of the estimator. Determine the C-R limit and
compare this with the variance.

At)”
In this case the Likelihood is of a different form: L(A1) = P(Y(Z) = y) = %eim

= In(L(A))=
y(ln(/l) + ln(t))— In(y!) - At = % = % -t=0=> iML = @ (Notice here that we use the
notation for an estimator rather than the estimate Y )
t
> 1 1 . 1 1
E(A) = EY(0) = 21 = 2 Wnbiased), V(4,,) = V(Y (1)) =
t

—22t=£—)0ast—)oo.

t t

dIn(L(A)) Y(@) d*In(L()  Y() 1 1 t ,
T —t= o7E =- ge =11 = ?E(Y(t)) = ?ﬂt =7 Thus, the variance

equals the C-R limit 1/ /(1) and we conclude that iML is an unbiased MVE.

b) Find the ML estimator OfP(Y(t) = ()) — ¢~**. Compute an estimate of the latter when t = 0.5 and we have
observed that Y(5) =10.

10
) ——=0.5

The ML estimator is (e%M"'t) which gives the estimate e >
but it can be shown that the bias tends to zero with increasing t.

-1
=e

~ (.37 . The latter estimator is in fact biased,
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EX 43 Let (Yl yeees Vg ) ~ Multinomial(n, p,,..., p, ) . Determine the ML estimators of p,,..., p, .

k-1 Yk
n!
Here L=C-p{" ---pi* =C- p{" ---p,fﬁf[l—ZpiJ , where C = ————.
Loy, |
i=1 YoV
We present two solutions, one without and one with the use of Lagrange’s multiplier. Without Lagrange’s multiplier:

k-1 k-1 Yk k-1 k-1
1nL=1nC+laniy'+ln(1—Zpi] =1nC+Zyilnpi+ykln(1— pi]
i=1 =

i=1 i=1 i=1

dInk oy 2igy 2L X Yoo ooy Ph otk G
dp, P ! P Pi Vi
_Zpi

: o D PN, P y
Since Zpi =1 we get Zy[ £k - —kai ="ftn=1= Di = £ and this inserted into (i) gives
i=1 =1 Vi Vi ia Yk n

A~ )i
pi=—.
n

With Lagrange’s multiplier:

k k
InL=InC+ Zyi In p; is to be maximized subject to the condition Zpi =1 (ii.
i=1 i1

k k
Put O = lnC+Z)’i In p, +i|:zpi _1} :j_Q: O+&+ﬂ’ =0= p; =—4Ay; =1y, . (iii) Putting this
i=1 i=1 P pi

k
into (i) gives /TZJ@ =A'n=1= A'=1/n, which inserted into (iii) gives p, =y, /n.

i=1
The difficulty in this example arises from the fact that there are just k-1 genuine (linearly independent) parameters
to estimate.
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EX44 (Y, ) areiid where ¥, ~ Gamma(A, k)

a) Determine the ML estimators of Aand p .

n N 7}'2%
From EX 33 e) the likelihood is [ = Hyl e = =
re (k)

dinL nk I
an 4 e
InL =nk-InA—nlnl(k)+ (k - 1)Zlny, /IZyl il dlnl“izlk) .
=1 =nln/1—n—+21nyi
d

i=1
Putting these expressions equal to zero and solving for the two parameters yields:

~

nk z A . k dinT'(k) < .
o = A, =L ()and nln| — |-n———2+ > Iny, =0 (i)
2 ;y, ML 3 5 dk ; Vi

dlnF(k) iny 2 Vi

By first solving (iii) for l:rML and then putting this into (i) yields the solutions. However, (iii) has to be solved iteratively.
How this can be done is illustrated in b) below.

(iii)

Rearranging the terms in equation (ii) gives Ink —

b) From a sample of n = 100 observations the following quantities are calculated:

Dy, =22356, >y} =619.0525, Iny, = 66.3803

Compute the ML estimates of 4 and k.

The right hand side of (i) is In(2.2356)-0.6638=0.1407. With g(k) = Ink we want to determine the value

_ dInl(k)
dInT(k) . dk

of k such that g(k) = 0.1407 . The function is well known in mathematics and is called the digamma

function. We can thus plot g(k) against k to find a solution of k.

Some help in the search for solution is to use the estimate obtained by the Method of Moments. In EX 38 it was
vom = V> /5% . Now, s? = (619.0525 —(223.56)* /100)/(100—1) =1.2046and y = 2.2356,so0
l:rMom =4.15. Itis felt that a search for k in the interval [3.00, 5.00] should suffice.

shown that /2

The following program code (written in SAS) can be used to find k.
data a;
do k=3 to 5 by 0.01; g=log(k)-digamma(k); output; end;

proc print; var k g; run;

The solutionis k,, = 3.71 and putting this into (i) finally gives 4,, =1.69.
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4.4 Final words

In this chapter we have only considered estimation of parameters and function of parameters. E.g. we can
estimate p(y)= 1"/ yle”” by plugging in an estimate of A.Itisalso possible to estimate p(y), 7(»), F(»)

etc. directly from data without model assumptions, but such procedures are beyond the scope of this book.

The information inequality in (22) seems to have been first discovered by Aitken and Silverstone in 1942

during the second World War. During the 1920s Fisher showed that V(éML) =1/1(0) in large samples.
Consider the estimation of g in the normal distribution. The estimator ¥ is unbiased for s and has
variance o> /n. An alternative estimator is the sample median, say m. This is also unbiased and has
variance 7o / 2n inlarge samples (Rao (1965), p356). The relative efficiencyis V' (Y)/V (m) =2/ = 0.63,
and from this it seems obvious that the sample mean is to be preferred. However, there may be other
aspects to take account of. In some cases the median is easier to use or can be computed more rapidly.
As an example, consider estimation of the mean life length of rats that have been exposed to some drug.
If we use the sample mean we have to wait until all rats have died (which may take years). By using the

sample median we only have to wait until half of the rats have died.

In some text books one can find the concepts Best Asymptotic Normal (BAN) estimator and Consistent
Asymptotic Normal (CAN) estimator. The ML estimator is both BAN and CAN.
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Supplementary Exercises, Ch. 4

a)
b)

EX 45 (Yl ):':] are iid with Y, ~ Uniform|0,b).

Find an unbiased estimator of bbased on the largest observation ¥,,) and determine the variance of the estimator.
Show that the methods of OLS and Moment give identical unbiased estimators and determine the variance of
the estimators.

Compare the relative efficiency of the estimators in a) and b).

The waiting times at a red traffic light were recorded 10 times and gave the following values (in seconds): 8, 13,
16, 12, 46, 4, 22, 17, 34, 28. Use the data to estimate the time for each red light period. [Chose any estimator
you want. Which one is most reliable?]

a)
b)
4]

EX 46 (Yl )7:1 are independent with Y, ~ Binomial(n,, p).

Find unbiased estimators of p by using the OLS- and ML methods. Compare the variances of the estimators.
Show that the ML estimator is BLUE, in contrast to the OLS estimator, and is in fact a MVE.

To estimate p = ‘Proportion of students with back/neck pain, a sample of students in three class-rooms were
taken with the following result:

Room Total number of students Number with back/neck pain
1 30 1
2 25 3
3 35 2

Compute the OLS- and ML estimates of p.

a)

EX 47 (Yl );':1 are iid with Y; ~ Geometric(p) .

Find the ML estimator of p.

b) Sometimes it is practical to use sequentially collected data, rather than data with a fixed sample size n. Consider

the following (fictive) data collected from a stream of students passing by:( 0,0,0,1,1,0,0,1), where ‘1" indicate
that the student visited a pub last night and ‘0’ that the student did not visit a pub. Estimate the proportion of
students who visited a pub last night.

a)

EX 48 (Yl )7:1 are independent with Y, ~ N(fx,,c%)

Find the ML estimator of /3 . Show that it is BLUE and determine the distribution of the estimator.

b) Find the ML estimator of o2 and show that it is biased. Remove the bias and determine the distribution of the

corrected estimator.
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Exercises in Statistical Inference
with detailed solutions Point estimation

EX 49 In order to estimate mean /¢ and variance c’ina normally distributed population, one takes independent
samples from different regions. Determine the BLUE of the two parameters from the following data:

Region 1 n k

H (AN
Sample size n n,

1

Sample mean - n v
p Y, Y,
Sample variance 2 n 2
S Sk

EX 50 Let (Y,,Y,,Y; ) ~ Multinomial(n, p,2 p,(1—3p)) Find the ML estimator of p and check whether it is MVU.
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5 Interval estimation

In the previous chapter we considered the estimation of an unknown population parameter 0 at a single
point. In this chapter we will show how it is possible to construct intervals that enclose 6 with a certain
degree of confidence. This approach is more informative than that of Ch. 4 since it does not only tell

us about the location of the parameter value, but also how confident we should be with the estimate.

5.1 Concepts

A confidence interval (CI) is a pair of statistics (6,,6,),6, <@, that encloses 6 with probability
1 -, the latter being termed the confidence coefficient or confidence level. The use of 1 -« is somewhat

confusing, but its origin will be evident in Ch. 6.

Some properties of a CI:

éL and éU are both functions of a random sample Y, ... Y and therefore the location and

length of the CI will vary randomly.

- There is no guarantee that a specific CI, which is a function of y, ... y , contains the true value
of 0. All we know is that a sequence of specific CIs will contain 6 in 100(1 — )% of all cases
in the long run.

- It is desirable that the CI is short, in order to be informative, and also that 1— is high, so
that the CI is reliable. However these two aspects are incompatible. By increasing | — & we are
also increasing the length of the CI.

- There is no golden rule to solve the conflict between length and level of a CI. In practice it

is up to the statistician to use common sense in this matter. If the sample size is small and if

population variance V(Y) is large, then one should be prepared to decrease the confidence

level rather than stick to the conventional level of 0.95.

In Ch. 4 there were some requirements on an estimator, and especially that it should be an unbiased
MVE. Here we define a ‘best’ interval estimator by the requirement that £(6,, — 6, ) is minimum for

given n and 1-a.

An important method for finding a CI for 0 is to find a pivotal statistic, i.e. a statistic with the following

properties:

1) Itis a function of Y, ... Y and 6.
2) Its probability distribution does not depend of 6.

An example of a pivotal statisticis §*(n—1)/c? ~ y*(n—1) (Cf. EX 18). The subsequent examples will

show how the pivotal method works.
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5.2 Cls in small samples by means of pivotal statistics

EX 51 (Yl );1:1 areiid where Y, ~ N(1,07).

a) Construct 95% Cls for £ and o when n = 10.
b) Determine the specific Cls when 3 = 80 and S* = 81.

a) Clfor tt .

(Y — )
- ~ N(0,1)
From ch.3.1011), L =#) ___o/n

SINn s [2o-
o/ln (n—=1)

since the T- distribution is symmetric around zero

~ T'(n—1).This quantity is pivotal. Let C be some constant, then

7 _ s s
1—a=P(—C<Y_ji<Cj: P(Y—C\/;<y<Y+C\/;j (i)
S/vn P(-C<T(n-1)<C) (ii)

In (i) we have simply rearranged the inequality so that £z is centered. (ii) is used to determine Cin which case we
must know the confidence level 1 — & and n.

With 1—a =0.95 we get: p(_ C<T©O) < C) =0.95= C =2.262, obtained from tables of the T- distribution. The

95% Cl for Lt is thus (7 - 2.262i, Y + 22621] .

Jio Jio

Notice that the interval can be constructed before the sample is taken.
Clforo?

2 2
o S°(n-1
From EX 18, S* ~ ——— 7 (n — 1) which is not pivotal, but¥ ~ y*(n—1) is. The chi-square

(n=1) o’
distribution is not symmetric so we consider two constants a and b such that

S*n-1) , S*(n-1
Sz(n2—1)<bJ= P(T<O' <TJ

1—a=P(a<
o P(a<;(2(n—1)<b)

With 1—a = 0.95 the area below a under the chi-square density is 0.025 and the area above b is 0.025. Thus,
952 982 J

Pla< 22(9)<b)=0.95= a =2.7004,b =19.0228 . The 95% Ci for &> s ,
19.0228°2.7004

b)

9
The lower and upper limits in the specific Cl for £ are 80+ 2.26ZT =80+ 6.4, so the 95% Cl is (73.6,86.4).
10

9-81 9-81
19.0228° 2.7004
variance is a squared quantity, such as dollar? or kg It would be wise to use a confidence level lower than 95% in

The specific Cl for o~ is [ ] or (38.3, 270.0). This interval is very wide, as it should be since

this case.

Download free eBooks at bookboon.com


http://bookboon.com/

Ex52(Y, )", areiid with Y, ~ Uniform|0,b]

a) Construct a 95% Cl for b based on the largest observation in the sample.
b) Determine the specific 95% Cl from the following data: 28, 19, 31, 12, 15.

a)
y n
From (8) in Ch. 3.1the cdf of the largest observation Y(n) is FY<n> ()= (Zj ,0<y<b .Y(n) is
not pivotal, but we may try to find a pivotal statistic by the following device. Consider CY(,,) with cdf
n
y - .
FCY(,,) () = P(CY(n) < )= P(Y(n) < y/C)z FY(n) (y/C)) = (Ej . This is not dependenton bif C =1/b.
Thus, Y, / bis pivotal with cdf Fy ,(y) =y",0<y<b.

We now proceed as in EX 51.

1
P(Y,, /b <c,)=cl =0.025 = ¢, =0.025"
1
P(Y,, /b <c,)=cl =0.975 = c, =0.975"

0.95=Ple, <Y, /b<c,)=

It remains to put the parameter b in the center,

Y, Y, Y, Y,
P(cl<Y(n)/b<c2):P(&<b< (n)]:> (")1 , (")1 is a 95% Cl for b.
€ G

0.9757 0.025"

b)

3131
o [=(31.2,64.8)

0.9755 0.025°

Heren=5andYn) =31=
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Exercises in Statistical Inference
with detailed solutions Interval estimation

EX 53 Given two independent sets of iid variables (Xi )LXI and (Yl ):1=Y1 where X, ~N(u,,0%)and
2
Y, ~N(uy,0y)-

2, 2
a) Construct a Cl for the ratio Oy /Gy. 5 5 5
b) Construct a Cl for the difference (,uX - ,uy)assuming that Oy =0y =0,

a)

) 2 ) 2
Consider the two unbiased estimators 0y = Sy and Oy =Sy .These are independent since they are based on
independent sets of variables. From EX 18 in Ch. 3.1 we know that

2 2

9% 2y —Dand 82 ~—2X 32 (n, —1) =

Sy ~
(ny =1 (ny =1)

Sk N ox ‘12(”)( —Dny -1

2

Ox L
— ~——F(n, —1,n, —1) [Cf. the F- distribution in Ch. 3.1]
Si oy Xy =Diny-D ey T

Oy
o2 S2
The latter quantity is not pivotal, but —g . —)2( ~F(ny =Ln, =1is.
Ox Wy

360°
thinking
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EX 53 (Continued)
The F- distribution is not symmetric so we choose two constants ¢, and ¢, as limits in the following inequality

2 @2 S)z( O')Zr S)Z(
P <—=< .
1—0{:P(c1 <—O_§ .S)Z( <02J [CZS)% ol ¢S} (1)
xor Ple, <F(ny —ln, —1)<c,) (i)

In (i) we have simply centered the variance ratio. The expression in (ii) is used to determine the two constants
¢, and C, . However, this may be cumbersome, especially since F- tables often are incomplete. We devote a few
lines to show how this can be done.

Let n, =25,n, =10and1—a = 0.95 . We want to determine ¢; and ¢, so that

(i) holds. Since P(F(24,9) > Cz): 0.025 we obtain ¢, =3.61 by using Table 7 in
Wackerly et al. It is harder to find the value of ¢| from the table. The value of C, giving
P(F(24,9) > ¢ ) =0.9750or P(F(24,9) <¢ )= 0.025 is not shown. Instead we use the fact that [See Ch. 3.1 (12).]

P(F(249)<¢,)= P( L clj = P[F(9,24) > ij 0025 =270 ¢, =037.

F(9,24) q c
2 S2 S2
In this case the 95% Cl for Ox is X > X Bk
or (3.61-S; 037-S;
b)

X ~ N(y)(,o-2 /nX),Y~ N(,uy,o-2 /ny): (X-Y)~ N(yX —y,0°(1/n, +1/ny)),sincea linear function of

normally distributed variables is itself normally distributed (Cf. Ch. 2.2.2). Thus,
(X =Y)—(uxy —y)
\/az(l/nx +1/n,)

of o2.

~ N(0,1) . This is pivotal, but it can't be used since &> is unknown. We need an estimator

~(ny —DS% +(n, —1)S;
ny —1+n, -1

From EX 49 it follows that &2 is BLUE for o2 . Since (nX — l)S)z( ~ 0-2;(2 (nX — 1) and

(ny =S} ~ x*(n, —1) it follows that

&% ~ 0'2()(2(”)( _1)"‘7(2(”Y _1))~0'2 Zz(nx +ny =2)
ny —l+n, -1 (ny +ny —2)

[Cf.Ch. 3.1 (8)]

The following statistic is pivotal and useful
(X —=Y) = (uy — pty)
(X =7)~(uy —y) _ N Ay +1Un)  NOD
V62 ny +1/ny) &2 (U/ny +1/ny) \/lz(nX+nY—2)
Joi(/ny +1/ny) (ny +ny =2)

Proceeding in the same way as in EX 51 we finally obtain the lower and upper Cl limits as

X -Y +Cy6*(I/ny +1/ny) , where Cis determined from the T'(n, + ny —2) -distribution.

~T(ny +ny, —2)
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Exercises in Statistical Inference
with detailed solutions Interval estimation

Comment to EX 53 The results in this exercise are crucial for comparing two means. By making a CI
for (44y — ty) the main interest is whether the CI encloses zero. If a 95% CI, or a CI of higher level,
does not contain zero it is customary to conclude that the two means are significally different. This way
of claiming statistical significance is different from another one based on statistical hypothesis testing

that is considered in Ch. 6.

Notice that the first step was to make a CI for the variance ratio o' /o5 . If the latter encloses 1, the
customary conclusion is that there is no significant difference between the variances, which therefore
could be set equal. The CI for (ty — Hy) was then constructed under this assumptions. On the other
hand, if the CI for the variance ratio does not enclose 1 we can’t claim that variances are equal and a
different approach is required. This is called the Behrens-Fisher’s problem for which several approximate
solutions have been suggested. The latter are however beyond the level of this book. Most statistical

software present solutions both with and without the assumption of equal variances.
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EX 54 (Yl );’:1 are independent with ¥; ~ N(fx;, o). Construct Cls for and & .

Cl for ﬂ

. . XY 3 _
From EX 48 we know that ,, = By s = Z and that Buw-B N(0,1) . The latter

2 ot I x}

statistic is pivotal but it can't be used since o % is unknown. As an unbiased estimator of o~ we take
A 2
52 = Z(Yz — B x:) o’
(n-1 (n-1)

A pivotal statistic that is useful is

77 (n—1) [Cf.EX 48], where ,éML and 6% are independent.

B — B

A [ 2 2
P =P c /in __NOD T(n—1) the latter distribution being symmetric around zero. Thus

DD Jm—n
Jor w1

l—qg=Pl -C< ﬂAML_ﬂ <C|= P(ﬂAML_CVUAZ/zxiz <ﬂ</}ML+C\/&2/in2)
NS P(-C<T(n-1)<C)

The Cl for Bis 3, + C4/6 /in2 where Cis determined from the 7'(n —1) - distribution. To illustrate the
computation of C, let n = 10 and assume that we want a 90% Cl for 3 . Since the area under the T - density
between —Cand Cis 0.90, the area above Cis 0.05. (Most tables today show areas above C.) From the tables we get
C=1.833.

Cl for 02

& (n-1)

62 is not pivotal, but 3 ~ }(2 (n —1) is. Therefore, and since the chi-square distribution is not symmetric,
o

there are two constants a and b to be determined.

. 6i(n-1) 6i(n-1)
1—a=P(a<m<bj= P[ PR — J

2 Pla< 7z (n-1)<b)

(o2
6*(n-1) 6*(n-1)
p .

5
a

Here a and b are determined as in EX 51. The Cl for 0-2 is thus [
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53 Approximate Cls in large samples based on Central Limit Theorems

In Ch. 2.2.2 (a) the Central Limit Theorem (CLT) was stated for a standardized sum of iid variables,
denoted by Z, , and for a Poisson process in Ch. 2.2.2 (c), denoted by Z(¢) . In Ch. 4.3.4 it was stated that
standardized ML estimators have asymptotic N(0,l) -distributions. These results can be used to find
ClIs that holds approximately in large samples. Since the CIs only hold approximately it is important to

understand the meaning of ‘a large sample. Below some examples of CIs derived from CLTs are given.

EX55 Y ~ Binomial(n, p), or equivalently (Yl )?:1 are iid with Y, ~ Bernoulli( p) . Determine a Cl for p based
onY=ZYi andalargen.Putp=Y/n.

a) Give a justification for the formula p + C, /13(1 — p)/n that is often found in textbooks. (Sometimes division
by n -1 is used instead of n.).

From EX 23¢)

ot e bp ) [Plo-cBU=hn < p< pr B f)n)
Vp(=p)/n P(-C<2z,<0)

where C is determined from tables of the Normal distribution

b) Show that a more accurate Cl for p is given by the limits

25+ Int2p+C?/n) —4p*(1+C? 1n)
21+C?/n)

From EX 23b)

1—a=P(—C<—ﬁ_p <Cj= P((ﬁ_p)2<C2@) ®

\Vp(=p)/n P(-C<z,<C) (ii)

By solving the inequality in (i) for p it can be shown that p is located between the limits stated in b). Cin (ii) is
obtained from the normal distribution. The Cl in b) is more accurate since the approach to normality goes much
faster for Z2 than for Z1 . Notice that the approach to normality for Z1 requires not only convergence in distribution,
but also convergence in probability as was shown in EX 23 ¢).

Comment to EX 55 It is important to know the difference between the expressions given in EX 55 a)
and b). The former is often stated in textbooks as being a result of the CLT and sometimes lowest sample
sizes of 30-50 are advocated. This may hold for the validity of the expression in b), but definitely not

for the expression in a).

In 1963 an interesting relation was found between the Binomial - and F distributions by G.H. Jowett.
By using this it is possible to obtain a CI for p that holds for any sample size. The latter may be hard to
find in text books at master level in statistics, but yet we present it here since the result is very useful.
(Cf. Casella & Berger 1990, p. 499.)

Download free eBooks at bookboon.com


http://bookboon.com/

Let Fo,5(f], f>) be the 97.5% percentile of the F distribution, i.e. P(F(fl J5) > Fors(f1s fs )) =0.025.
Then a 95% Cl for p is given by

Y (Y +1)F g5 QY +1) 2(n—Y)
Y+(n—Y +)FgsQn—Y +1)20) n—Y + (Y + 1)F o5 (2(Y +1) 2(n —Y)

If Y = 0 then the lower limitis 0 and if ¥ = 7 then the upper limit is 1.

The expression in (23) gives Cls that are conservative in the sense that they give CIs with a confidence
level of at least 95%. For simplicity a 95% CI was considered. If a 99% CI was required we would instead

search for 99.5% percentiles in the F-distribution.

EX 56 Use the expressions for a Clin (21) and in EX 55 a) and b) to calculate 95% Cls for p in the two cases
(y=2,n=20)and (y =10,n =100).

To use (23) we have to determine the 97.5% percentiles of the F-distribution. This can be a problem since F-tables
are often incomplete and percentiles are only shown for a few degrees of freedom. The best one can do is to use
statistical software, such as SAS or SPSS, to find the percentiles. In worst case one may be forced to use linear
interpolation.

Inthe case (y = 2,n = 20) we find Fy,5(38,4) = 8.4191and F,,5(6,36) = 2.7846 . (These values were
obtained by using the function finv(0.975, f|, f,) in SAS.) Similarly, in the case (y = 10,7 =100) we get
F s (182,20) = 2.1326 and Fy,; (22,180) = 1.7503 .

In both cases we get the same point estimate of p, 2/20=10/100 = 10%, but the Cls are different:

Cl(%) forp

Expression in: (23) 55 b) 55 a)
(y=2,n=20) (1.2,31.7) (2.8,30.1) (-3.1,23.1)
(y=10,n=100) (4.9,17.6) (5.5,17.4) (4.1,15.7)

The Cls based on (23) are certainly wider, but they are more reliable since they are conservative as mentioned above.
Notice that the expression in 55 a) can result in peculiar Cls in small samples.
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EX 57 Determine a Cl for the rate 4 in a Poisson process.

In Ch. 2.2.2 (4)(c) it was seen that, if Y (¢) is a Poisson process of rate 1 ,then

Y()-At _Y(O)/t-4

TR

there are some difficulties to obtain an inequality for A by using this fact. Instead we notice that the statistic

A= Y(t)/t—L— A, as t — oo. [This follows from (10) in Ch. 3.2.1 since E(1) = lE(Y(t)) = A =Aand
t t

Z(@) = >7Z ~ N(0,1) as t — oo This statistic is asymptotically pivotal, but

V(i)zizV(Y(f))=£2t=%—>0,ast—>oo.]-ThU5,
t t
) 2 v, i
AL _NAlt ,and from (11) in Ch. 3.2.1 we get ——=—->Z . Now,
At Al p NA/t
a0

1—05:P{—C<H<CJ: P(’I_C Alt<A<a+C }“/tj.So A+ CN A/t are the Cl limits for 1,
P(—C<Z<C)

where Cis determined from tables over the normal distribution.

EX 58 (Yl )l’.l:l are iid variables from an unspecified distribution with mean £ and variance o’ .If nis large a 95% Cl
for ¢ is given by

Y £1.96

Sl

(This is perhaps the most cited expression in statistical inference and is found in most elementary text books.

Sometimes 1.96 is replaced by the figure 2,)

0]

Give a rigorous motivation for the expression!

2
From (9b) V/(S2) — 0,asn —> 0 = §* —L 5 2 (CF.(10)in Ch.33.1)=> g(S?) = 1/% —L 51(cf. (1) in
O

_ V=K1 b7 Ny
Ch.33.0).Thus, ¥ —p _ o/n D 57~ N(0,))
O'/\/;

Y - - S = N
For large n, 0.95= P(— 1.96 < Ll 1.96J = P(Y -1.96—=<u<Yt + 1.96—) .
S/n Jn Jn
The simple expression above should be used with caution. Especially if the population distribution is heavily skewed
or has multiple peaks, a very large n would be required.
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5.4 Some further topics
541 Selecting the sample size

Looking back at the examples of this chapter it is seen that the bounds of a CI are functions of the sample
size n. This opens the possibility to determine n in advance in such a way that the CI has a stipulated
length. The problem is that the bounds of a CI are also dependent on the values of one or several statistics
that not yet have been computed. There is no simple solution to this problem but some guide lines can
be given when the CI has the structure ¢ + Cm . The term C4[V (@) is called Bound on the Error

(BE). We consider two cases, a proportion and a mean.

o Bernoulli proportion p in large samples

The Clis p+Cy/p(1- p)/n,so BE = Cy/ p(1- p)/n . (Division by n - 1 instead of # is of minor importance.)
Values of p can be obtained in several ways:

- Worst case scenario. Choose p =1/2. It is easily shown that this value maximizes p(1-p) for
0 < p <1. The maximal BE now becomes C/ 2+/n . This solution should only be used when
there is no information whatsoever about p .

- Qualified guess. Here one uses earlier experience to guess the value of p. Notice that the
function p(1- p) is symmetricaround p =1/2soe.g. p =0.10 gives the same BEas p =0.90

- Pilot study. The idea is to take a first small sample (pilot sample) to estimate p. Observations
from the pilot sample could then be included into the final sample. The approach is appealing
since it is free from more or less reliable assumptions. A problem is to decide how large the
pilot sample shall be. One solution is to collect data sequentially and compute estimates p,

for increasing n until the estimates have stabilized. Usually this occurs for # less than 20-30.

After having determined an appropriate value of 2 it is instructive to plot BE on the Y-axes against #
on the X-axis for various choices of C. (Remember that C =1.645,1.960,2.575 corresponds to the
confidence levels 90%, 95% and 99%, respectively.) Alternatively, in the expression for BE above one can

solve for n, givingn = p(1 - [))(C/B)2 .

One should be aware that data collection in large samples can be costly. A simple expression for the total

costisc, +c-n, where ¢, is a fixed cost and ¢ is the cost for each sample unit.
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EX 59 Determine the sample size needed to get a Cl for p with a BE of 0.01 or alternatively 0.025. The Cl levels shall be
90%, 95% or 99%.

a) Use the worst case scenario. s
b) Use a pilot sample with the data (Yl )1.21 (0,0,1,0,0,0,0,1,0,0,0,0,0,0,1) where P(Y; =1)=p.

Ina)weuse p=1/2.

In b) we conclude from the table below that p = 0.20 may be appropriate

n 10 11 12 13 14 15

n .20 18. 17 15 14 .20
2.yl
i=1

The following table illustrates how the sample size n differs between the two approaches in a) and b):

a) p=0.5 b) p=0.2
Cl level BE n Cl level BE n
90% 0.01 6765 90% 0.01 4330
95% “ 9604 95% “ 6147
99% “ 16577 99% “ 10609
90% 0.025 1082 90% 0.025 693
95% “ 1537 95% “ 983
99% “ 2652 99% “ 1697

It is seen that the sample size increases with increasing Cl level and decreases with increasing length of the Cl. The
approach in a) leads to unnecessary large samples compared with the approach in b).

o Population mean i in large samples

In EX 58 it was shown that the limits ¥ + C- S /+/n gives a CI for u in large samples provided that the
observations are iid. The Bound on the Error is BE = C-S/+/n from which n=C>S>/BE*. In the

latter expression S can be determined in at least two ways.

- ‘Empirical rule’. Replace $* by the true variance ¢>. Since 99% of the observations are found
within the variation limits ¢ +2.580, the range of y-values is roughly 2-2.580 = 5.20 .
From this we getS = o = range/5.20 . (Sometimes the figure 2.8 is replaced by 1.96 =2,

corresponding to 95% variation limits, which gives S = range/4c.)

This approach has several drawbacks. There is a great amount of arbitrariness in the choice of
coefficient, 2.58 or 2, and sometimes even 3. As a consequence there will be large differences
in the choice of n. Furthermore, in many cases it can be hard to identify the range of possible

y-values.
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- Pilot study. As in the case with a Bernoulli proportion, we may take a first small sample to
obtain a likely value of §%. Data are collected sequentially until the value of $* has stabilized.
The calculations can be performed in any of the following ways.

i=1 i=1 i=1 i=1

For n>5, say: Zyi andz“yi2 =8 = {Zylz —(Z:yl-)2 /nj/ (n - 1) or from the recursive

_ ) _
relations Vot :M’ 3+1 — (n-1S, + Yot = V)

n+l1 n (n+1)
in Casella & Berger, p. 244.)

. (The latter relations are found

I B Sweden
I B Sverige

LiNnkoping University -
iNnNovative, Nignly rankedg,
European

Interested in Computer Science? Kick-start your career
with an English-taught master’s degree.

—  Click here!

LINKOPING
II.“ UNIVERSITY

Download free eBooks at bookboon.com

76

Click on the ad to read more



http://bookboon.com/
http://bookboon.com/count/advert/c3336063-0802-418d-8892-a4ad00f4407f

Exercises in Statistical Inference
with detailed solutions Interval estimation

EX 60 In order to construct a 95% Cl for the mean Area of Optic Disc (AOD) in a group of children, one wants to
determine the sample size n that is needed to get a Bound on the Error (BE) of about 0.10 to 0.20
(l’nmz). In a pilot study the following values were obtained sequentially.

n 1 2 3 4 5 6 7 8 9 10

AOD 2.39 333 212 1.90 2.66 2.53 2.30 2.98 2.59 2.70

n 1 12 13 14 15

AOD 2.20 2.77 1.86 2.72 3.28

Use the data to first calculate a value of $? and then suggest a proper sample size.

The sequentially calculated values of $? are, starting from n =7.

n 7 8 9 10 1 12 13 14 15

Sz 0.21 0.21 0.19 0.17 0.16 0.15 0.18 0.17 0.20

n

An appropriate value seems to be S* = 0.20 that gives # = 1.96% - 0.20/ BE?* . The desired sample sizes are thus
n="77for BE =0.10 and n =20 for BE =0.20.

54.2 Cl for a function of a parameter

Given a ClI for 9, say éL <0 <8, ,itis possible to make a CI for a function of @, g(@), provided that the

latter is monotonous (decreasing or increasing). The approach is illustrated in the following examples.

EX 61 ( ,‘),11 are iid where Y; ~ Exponential(A).

n n
a) Determine a 95% Clfor A based on the statistic z Y, . Compute the Cl limits when n=50 and Z y; =65.0.

i=1 i=1

Compute the corresponding Cl limits for the survival function P(Y > y) = et

Y, ~ Gamma(A,1) = [Ch. 3.1] = EYi ~ Gamma(A,n) = [Ch..2.2.2] =

i=1
C 2 3 P2 <i< b
ZAZY,. ~ x°(2n).Thus, .95 = P[a < 2/1214 < b] = z%yi 22)@
i=1

i=1 2
Pla< y~(2n) <b)
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From tables of the Chi square distribution (e.g. in Wackerly et al 2007, pp850-851) we get, with
50 P(1(100) > b)=0.025 = b =129.56
" P(r2(100) > a)=0975 = a=7422

The Cl for A is thus (M 129.56

, j=(0.57,1.00) :
2-65° 2-65

by P(Y>y)= e is monotonously decreasing with A . Therefore

A <A< Ay =e W7 <e™ <™ Itfollows that the 95% Cl for the survival function is (efy, e 37 )

Notice that the latter Cl will cover the true value in 95% of all cases at one specific value of y. It may be tempting to
plot the lower and upper limits against y, thereby creating a so called confidence region. The latter will however not
contain the true values in 95% of all the cases, since we are making several confidence statements simultaneously
which in turn will reduce the confidence level. This Multiple inference problem is discussed further in Ch. 6.4.

In Ch. 2.2.1 (3) it was stated that if X(s)and Y(¢) are Poisson processes of rates 1, and A, , respectively,
Ayt
Ays+ Ayt
make a CI for the ratio R = 4, /1, . Due to its importance we formulate the solution of the problem as

then the conditional variable (Y(t)| X(s)+Y(t)= n)~ Binomial(n, p = ). This can be used to

a theorem.

A ClI for the ratio of two Poisson rates R = /"LY //IX can be constructed in the following way:

a) First, make a Cl for the Binomial proportion p giving (ﬁL . Dy )

b) ACIforRisthen obtainedas| g — Py Sp _Pu_ S| (24)
- A=yt

This follows easily from the fact that p = RL = R(p)= P__ % and this is a function that increases
r+s

(-p)t

monotonously from R(0) = 0 to infinity as p — 1.
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EX 62 In the snow-free period April-November there were 85 road accidents on a certain stretch of road and during
the winter period December-March there were 65 road accidents on the same stretch. Is the rate of road accidents
significantly higher during the winter period?

Introduce the notations

X (8) = Number of accidents in the snow - free period, of rate A,
Y(4) = - winter period, of rate A,
We will answer the question about significance by making a 95% Cl for R = ﬂ,Y /ﬂ,X .

If the latter does not cover 1 we draw the conclusion that there is a significant difference.
The observed proportion of Y (4) /(Y(4) + X(S)) is p=65/(65+85)=0.4333. Sincenis

large we use the expression p £1.964/ p(1— p)/n fora 95% Clin EX 55 a). This yields the limits
0.4333+£0.0809 or the CI (0.3524,0.5 142) . The expression in (24) finally gives the Cl limits for R:

feL = ﬂ§ =1.09, ]%U = &§ =2.17. Since the latter interval does not cover 1and is in fact
(1-0.3524) 4 (1-0.5142) 4

located above 1, the conclusion is that the rate of road accidents is significantly higher in the winter period.

In Ch. 6 we will consider other ways to claim statistical significance.

5.5 Final words

Verify that you can find the points @ and b in the x° —and F — distributions such that 2.5% of the

observations are smaller than a and 97.5% of the observations are larger than b. The intervals in the

examples of Ch. 5 are 95% CIs. Change the confidence levels to 90% and 99% to study the effect on the

lengths of the ClIs.

Remember the interpretation of a CI. If you repeatedly construct 95% Cls, then in the long run there

will be 1 interval of 20 that doesn’t cover the true parameter value.

Notice that proportions around 1/2 require the largest sample size for a given confidence level and Bound

on the Error. Many people do not agree about this. Therefor you should go through the arguments in

Ch. 5.4.1, so you can persuade them.
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Supplementary Exercises, Ch. 5

EX 63 The following data shows body weight (kg) of 10 males before (X) and after (Y) participating in a training
program with the purpose to reduce weight.

Subject 1 2 3 4 5 6 7 8 9 10
X 88.3 94.6 88.4 1025 [943 79.3 86.3 96.9 88.5 101.8
Y 88.1 93.5 88.5 1020 |94.7 78.5 86.1 96.2 88.2 101.1

a) Does the training program have a significant effect on weight-loss? Answer the question by drawing
conclusion from a 95% Cl for the average weight-loss.
[Hint: Just look at the differences within subjects. Don't use the approach in EX 53. Why?]

b) When the same training program was used by a population of females it was found that the variance of the
weight-loss was 0.7. Does the latter value differ significantly from the variance obtained for males?

c) Give a 95% Cl for the proportion of males that loses weight. Compare the results that are obtained by using
the expressions in EX 55 a) and in (23).

d) As expected, the Clin c) becomes very wide. Consider the sample above as a pilot sample and determine the
sample size needed to get a 95% Cl with a Bound on the Error that is 0.025.

EX 64 Data below summarizes measurements of Area of Optic Disk (AOD) in mm? from two samples of children called
FAS and Control. Children in the FAS (Fetal Alcoholic Syndrome) group had mothers who were high-consumers of
alcohol during pregnancy.

FAS Control
Sample size 22 30
Mean 2.01 2.55
Variance 0.3623 0.2305

Determine a 95% Cl for the difference of mean AOD between the two groups.

EX 65 Let (Yl )7:1 be iid where Y; ~ Exponential(A) .

a) Determine a 95% Cl for A based on the fact that (17— E(?))/,/V(?) —L2 57~ N(0,1).
b) Compute the expected length of the Cl in a) when 7 = 50. Compare the latter with the expected length of
the Clin X 61 a)

EX 66 During an epidemic a sample of five institutions at a university was randomly selected. These were asked how
many of their employees who were on the sick-list. The result was

Institution 1 2 3 4 5
Sick-listed 4 10 8 2 6
Total staff 10 42 25 11 12

Give a 95% Cl for the total proportion sick-listed at the university.

[Hint: Use the ML estimator in EX 46 together with the CLT.]
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EX 67 The number of bacteria (per cm®) in a certain type of food varies according to a Poisson distribution. In a
sample of 4 units one obtained the following result

Unit 1 2 3 4

Number of bacteria 103 112 91 117

Determine a 95% Cl for the mean number of bacteria.

[Hint: Use the asymptotic normality of the Poisson distribution.]
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6 Hypothesis Testing

In Ch. 5 we considered one way to claim statistical significance, namely to construct a CI for an unknown
parameter. In this chapter we will meet another way to claim significance, by setting up hypotheses about
parameters and to see if these are in accordance with data. There are mainly two ways to do this, the

p-value approach and the rejection region approach. Both of these are described below.

6.1 Concepts
6.1.1 p-value approach

In the p-value approach a basic hypothesis, called the null hypothesis H;, is formulated about one or
several parameters. In the next step a statistic T = T(Y, ... Y)), called a test statistic, is chosen and the
value taken by T in a specific sample determines whether H shall be rejected or not. The precise way

in which this is done is illustrated in the following example.

EX 68 Let p be the proportion of born boys in a certain population. We want to test the hypothesis H, : p = 1/2.
To this end we take sample of n born boys and calculate the value of the test statistic p = X /n, where X is the
number of born boys in the sample. If the value of D deviates ‘very much'’ from the value specified by H we should
reject H . But what is the meaning of ‘very much; is e.g. X=7 out of n = 10 enough?

For assistance in this matter we calculate the p-value = P(X > 7|p = 1/2)where it can be assumed that
X ~ Binomial(10,1/2) . Thus (Cf. Ch. 2.2.1 (2))

_(10 7 5 (10 8 2 (10 9 1, (10 10 0 _
p —value = 7 1/2)"(1/2)y" + g 1/2)°1/2)" + 9 1/2)y°1/2) + 10 (1/2)"(1/2)" =
176-(1/2)"° =0.1719.
The latter is called a one-sided(one-tailed) p-value. But there is nothing a priori that says that a deviation from H_ only
goes in one direction in this case. We should therefor also calculate P(X < 3‘p = 1/2): 0.1719. (The Binomial pf is

symmetric for p = 1/2.)

The two-sided p-value is thus 0.1719+0.1719 =0.34. The latter is the probability of getting observed extreme
deviations from H, by mere chance, and it is quite large.

Assume now that we instead have observed X = 70 out of # =100 . Since pP_pr P 57~ N(0,]), wecan
calculate a two-sided p-value in the following way: p(l—p)/n

p-1/2_070-1/2
J17400 /17400

P(p=070p=1/2)= P( j ~ P(Z > 4.00)=0.00003 =
P(p<030p=1/2)

Thus, p-value=2-0.00003 = 0.00006 , which is very small.
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A p-value is thus the probability of obtaining a value on the test statistic as least as extreme as the one

that is observed, provided that H, holds. Some comments on this.

A p-value should normally be two-sided. Exceptions are when it is obvious that deviations
only can go in one direction. If you present one-sided p-values in a paper that you send to a
scientific journal, it is likely that it will be returned since referees often wants two-sided p-values.
It is customary to reject H when the p-value is less than 0.05. Here is some frequently used

terminology for this:

0.05<p<0.10 ‘Weak significance’

0.01<p<0.05 ‘Significance’ *

0.001<p<0.01 ‘Strong significance’ **
p<0.001 ‘Very strong significance’ %

The concept of ‘Weak significance’ can be found in areas such as Psychology and Sociology
where sometimes sample sizes are small and the p-values become large only for this reason.
The use of stars, similar to classification of brandy, has been popular in medical studies, but

should be avoided. It has actually happened that it has been confused with foot notes.

A p-value expresses the degree of evidence against H that is found in the present sample and
nothing else. Hypotheses such as p = 1/2 for the proportion of heads when tossing a coin, or
mean = 0 for the difference in means between two groups, can strictly speaking be rejected
without data. (1/2 is not the same as 0.5 or something with more decimals, it is exactly one
divided by two.) These hypotheses can always be rejected by choosing n sufficiently large.
Consider a study conducted som years ago of the effect of physical activity upon on the risk
of getting heart disease. An ‘active’ group consisting of 30 000 subjects and a ‘control’ group
of 20 000 subjects were followed in time and the proportion of heart diseases were reported in
each group. In the study a p-value just below 0.05 was obtained for the hypothesis ‘no difference
between the proportion of heart disease in the two groups, Newspapers reported that it is now
proved that physical activity has a statistically significant positive effect on the risk of heart
disease. The author’s personal reaction to this as a statistician is that, if such large amount of
data were needed to get a p-value below 5%, then the true difference must be marginal.

The p-value concept seems to have been first used by Laplace in the 1770s when studying the
excess of born boys compared to girls. It was later popularized by R Fisher in the 1920s and he
invented the term fest of significance for this approach. It was later displaced by the rejection
region approach, to be described in the next section. During the last years the p-value approach
has regained its leading position. This is probably due to the rapid development of computer
programs by means of which the computation of p-values is easy, something that wasn’t the
case 30-50 years ago. Today most statistical soft-ware supply their users with a variety of
p-values, obtained by using various test statistics and under various assumptions. This in turn

has increased the need for a higher statistical level of knowledge.
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6.1.2 Rejection region approach

As before there is a null hypothesis H,, and a test statistic T. Now there is furthermore an alternative
hypothesis H_and a rejection region, RR, such that if T takes a value within RR then H, is rejected and
H_is accepted. (RR is sometimes called a critical region.) By using the symbol € (belongs to) this can be
expressed as ‘Reject H’<'T € RR". To types of errors can be made in reaching a decision. A type I error
is made if His rejected when H is true. The probability of this event is denoted ¢ and it is customary
to require that @ < 0.05. A type II error is made if H is accepted when H_ is true. The probability of

the latter event is denoted f.

An important concept is that of a power function, which is the probability of rejecting H,. If 6 is the
parameter that is specified by H , then the power is Pow(6) = P(T € RR). UnderH:0 = 6,, Pow(6,) = .
The latter equality is seldom possible to achieve when the test statistic has a discrete distribution and in

that case it is required that Pow(#) < . In general the power depends on: (i) 6, (ii) the sample size n,

(iii) the choice of RR and (iv) the choice of test statistic T. The best test statistic is the one that maximizes
the power for given 6,7 and RR. This is often based on the best estimator. (Stuart et al 1999, Ch. 22.36.)
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EX 69 Consider the test statistic ¥ =‘Number of born boys’ ~ Binomial(n =10, p) that is used for testing
H,:p=1/2against H  :p#1/2.

Compute the power for each of the RRs: (i) {0, 10}, (i) {0, 1,9, 10}, (iii) {0, 1,2,8,9, 10}. Suggest a proper RR.

(i) Pow, (p) = P(Y =0)+ P(Y =10)=[100 ]p‘](l—p)” +Gg]pl°(1—p)° =(1-p)"+p".
(ii) Pow, (p) = P(Y <1)+ P(Y > 9)= Pow, (p) + P(Y =1)+ P(Y =9) = Pow,(p) +

10 10

[ljpl(l—pf +(9jp9(l—p)‘ = Pow, (p)+10p(1—p)((l—p)8 +p8)-

10 2 8 10 8 2

(iif) Pow, (p) = P(Y < 2)+ PY 28)= Pow, (p) +| | |p*(1=p)" +| ' |P*(1=p)’ =

Pow, (p)+45p>(1- p)* (1= p)° + p°).

Pow
1.0

09
L:}
07
0.6
0.a
0.4
03
0.z

01

0.0
0o 0.1 02 0.3 0.4 0s 06 07 LR} 0s 1.0

The three power curves are shown in Figure 1.

Of special interest is to compute the power under H,, @; = Pow;(p =1/2) i =1,2,3.

a, =0.0062, o, =0.0480, ar; = 0.1796 . Since the latter value is larger than 0.05 we can't use the corresponding
RR.The RR {0, 1,9, 10} is to be preferred since it has a power that is less than 0.05 under the null hypothesis and it is
constantly larger than the power in (i).
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6.2 Methods of finding tests

In Ch. 4.3 some methods for finding point estimators were presented. We now consider some methods
that can guide us when testing hypotheses. These are based on the Chi-square principle, the Likelihood-

ratio (LR) principle and on miscellaneous methods.

6.2.1 The Chi-square principle

This requires that data are classified. For measurements on a continuous variable we thus have to create

classes. How this can be done is illustrated in EX 109 below. We thus have the following data

Class 1 2 k Total

Observed frequency Y, Y, Y, ZYI =n

Hypothetical probability » P, ) Z 2 =1

Here the hypothetical probability 2; is the probability of belonging to class i under H,. Examples of
such probabilities are given in the examples below. In general the null hypothesis can be formulated
Hy:p;,=p;(6,,0,,..), where 6,,0,,... are unknown parameters that need to be estimated (by the ML
method) giving 6,,6,.,.... The Chi-square statistic is
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A A 2
S (K—npifeliﬁz,...|l‘[0)) 05
Py npi(t91,t92,...|H0)

2 D 2
As h > 0, X°—— ¥ (k—1—a) under H,. a is the number of linearly independent parameters to estimate.

In practice (25) is used in the following way: Compute the value of X >, giving X J ¢ . Then calculate the

p-value P(;(2 (k—1-a)> X g )and reject H if the latter is smaller than 0.05.

EX 70 Given the following data

Class 1 2 Total
Observed frequenc n
q y Yl Y2
Probability 1-p p 1

Test Hy : p=1/2against H, : p#1/2.

There are no parameters to estimate under H,.

(Y, =n-1/2) +(Y2 —n-1/2)
n-1/2 5 n-1/2
be written [M .

V1/4n

X = gives X2, -p-value= P(y*(2—1-0) > X2, - Notice that X * can also

Contingency tables (R x C cross tables).

The following frequency table, often called a 2 x 2 table, is a convenience way to summarize data.

Factor 11
1 2 Total
Factor I 1 Y, Y, Y,
2 Y Y, Yy,
Total Y, Y, n

Here there are two ‘Factors, each divided into two categories. Examples are when the factors are two
doctors who classify the same n patients as either ‘Healthy’ (1) or ‘Diseased’ (2), or when the political
opinion (left- or right wing) of #n voters is measured at two times (Factor I and II). The table can be
generalized to a R x C table with R rows and C columns. It can also be extended to more than two factors,
e.g. when the political opinion of n voters about P >2 parties is measured at T > 2 times. In such a case

the sample is called a Panel. Notice that all cell-frequencies are random, except for the fixed sample size n.

Corresponding to the 2 x 2 table of frequencies, there is a 2 x 2 table of probabilities
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Factor 11

1 2 Total
Factor I 1 P P12 P
2 P P Doy
TOtal p +1 p +2 1

The “Total’ probabilities are called marginal proportions (probabilities). Notice that there are three genuine
(or linearly independent) parameters p; and two genuine marginal proportions, since the sum equals
1. In the R x C table there are R-C -1 genuine parameters p; and R—1+C—1 genuine marginal

proportions.

The frequencies in a 2 x 2 table are distributed Multinomid (n, p,,, P>, P51> P2, ) (CE. Ch. 2.2.1 (6)), so
the probability of the outcomes, or Likelihood if we are interested in the parameters, can be written

Y2 V21 4y V22

L = (const.)pi}' piy’ p>i' P2’ - We will consider two types of hypotheses:

Equality of marginalproportions. H : p,, = p,,.Thisiseasilyseentobeidenticalwith H, : p,, = p,, (=p).

(= p). Under H, there are 2 genuine parameters to estimate.

Independency between Factor I and Factor II. In this case H, : p; = p;, - p,;. Under H, there are 2

genuine parameters to estimate.
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EX 71 Test of equal marginal proportions in the 2x2 table by means of McNemar’s test.

As just noticed we shalltest H, : p,, = p,, < H, : py; = p;,(= p) . Let the Likelihood under H, be denoted
Ly . Then

L, = (const.)p]!' p”™> (1— p,;; —2p)”* . (Notice that we only keep the genuine parameters.)

InL, =In(const.)+ y;; Inp;; + (¥ + ) In p+ v, In(l— py, —2p)

dinL, _ L”[ -1 ]_0 dinly o )l+y[ -2 J_O
dpy, "on T\ A-py-2p)) 7 ap BT, B 1= pyy - 2p)

We thus have the equatjons
{yn/pu =yn /(- p; —2p) (1)
(Va1 +y2)/ P =2y, (1= p,, —2p) (2)
Since these may be somewhat tricky to solve we show an example of a solution.
Multiplying Eq. (1) by 2 and taking the difference between the left and right-hand sides in the two equations yields
Vu+y)/ P2y, /P =0=

+
P11 = 2Py, /(15 + ¥y, ) which inserted into Eq. (1) gives Yu Y _ Y22

20 1=2py, [y +y)-2p

So, M =p(V + VY TV tVp)=pn=p= M and this inserted into Eq. (1) gives

2 2n
P =i /”a”dﬁ”a”yﬁzz =1=p; —2p=yy/n.

(Yij —n-(f)ij|H0))2 . Here

According to the Chi-square principle.X2 = Z

n‘(ﬁ;j|H0)
A Y, R Y, +7, Y, Y.
Yll_n'(p11|H0):Yll_n'A:0’ le_”'(plz|H0)=le_n'( = 12)=( 2 21),
n 2n 2
n Y, +7, Y, -Y, . Y.
Y21—n-(p21|H0)=Y21—n-( 212 12) :( 21 12), Y22—n-(p22|H0)=Y22—n-£=0.
n 2 n
Thus
x? =0y G =Y)/2f (Fu=Yu)2f o\ (o =Ya)

(Yo +Y,)/2 (Y +Y,,)/2 (Y, +Yy)

This test statistic was derived by McNemar (McNemar 1947, p. 153) and has been termed McNemar's Test.

Under H, the statistic is distributed Zz 4-1-2)= Zz (Din large samples with p-value = P(ﬂ(2 > Xégs)
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EX 72 Test of independency

In the 2 x 2 table the hypothesis of independencyis H : p; = p;, - p,;,fori, j =1,2. Under H, the likelihood

is Ly = (const)(py, - py )" (Pr, - P2 ) P2y - Py )* (P2, - P,2 ). Since we only want genuine parameters, put
D, =1-=p,, and p,, =1- p,, .Taking logarithms gives

In L, = In(const.) + J’n(ln pi. tInp, )+ Y2 (lan +1In(l - P+1))+ Yai (ln(l -p)tinp, )+
Y (ln(l - Pt ln(l—p+1)).

dinL, _du Ve Y Im :)’11"')’12_()’21"')’22):&_ Yor
dp,, P P (=py) (A-py) Pt (I-p) p (- p1+)
dinLy yy  yo P TR  S  4 TI Do tyn) Yo Vo o
dp.  pa (U-py) ps (-py)  p, (-p.)  pa (-py)
From this we get
Vis = Ve Pis =V Ple = Pis :L:yi and similarly f)z+ ZyA.AIso notice that
D +224) n
Y NV _ Yy Vi

py=1-p,=1- and similarly p,, =
n n n

In the Chi-square statistic (25) (pl] |H ) '(131'+13+j )= " %7 Thus we obtain the statistic

2 (v, -7, Y, /nf

Xz _ i+ A4
Zﬂ Yi+'Y+j/n

In large samples this is distributed }{2 4-1-2)= Zz (1) and the p-value is P( @O > XOBS)

In the table with R rows and C columns the Chi-square statistic remains the same, but now the degrees of

freedom is changedto R- C —1— (R —1) — (C —1) = (R —1)(C —1). The p-value is now obtained as

P2 (R-1)(C 1)) > X2y).

When the hypothesis of independence between the two factors is rejected, one should go further

in the analysis and determine which combination of levels from the factors that contributes to the

dependency. This can be done by considering D; =Y; =Y., -Y,;/n. The latter is called Deviation and
is supplied by many statistical soft-wares. If D, is greater than zero or below zero there is an over-or
underrepresentation, respectively, of observations in cell (7, /). Since deviations may be due merely to
chance, one should study whether the deviation is significantly different from zero (a ‘significant deviation’).

A statistic for this purpose is the Cell Chi-square defined by

2
.-y, v, in)
! Yl+'Y+j/n
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In large samples this is distributed asa > (1) variable (Cochran 1954, p. 417). This means that if the Cell
Chi-square is larger than 3.85, then the deviation is significant at the 5% level. The single cell statistic is

supplied by statistical soft-ware, e.g. in SAS where it is denoted ‘Cell Chi-Square.

When analyzing deviations in many cells one should be aware of the risk of making wrong decisions
due to the multiple inference context. When several conclusions are to be drawn simultaneously with
5% significance one has to adjust the individual significance level so that the global level is maintained
at 5%. This is explained further in Ch. 6.4.

We now turn to another application of the chi-square principle, the test of fit. In this case the null
hypothesis specifies that data have a certain distribution. In (25) Y, are the observed frequencies which

are to be compared with the hypothetical ones under H.
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EX 73 A test of randomness for binary data.

A sequence of digital numbers starts with 0,0,0,0,1,1,... and ends with ...,0,0,1,0,0,1. We want to study whether these
occur in a random order. There are several ways to do this, but one is the following: Define the variable Y =‘Number
of digits until the first’1" occurs. The observations on Y are

Y 1 2 3 4 5 6 10

Frequency 26 13 9 2 1 1 1

From Ch. 2.2.1 (3) it follows that in this case H: ‘Digits are in random order’is the same as H, : ¥ ~ Geometric(p),
where p is the probability of ‘1.

In EX 47 it is seen that the ML estimate of p is ﬁ =1/ . From the table above we get

D Vi 26-1413:2+..+1.10 108 . 53

y = — = p=
Y 26+13+... 41 53 77108

The estimated expected frequency under H, of the outcome 'Y = y'is n-(1— p)” p, y =1,2,...E.g. the expected
frequency of the outcome 'Y = 2'is 53+ (1—0.49)*" 0.49 = 13.2 . One obtains the following table

y 1 2 3 | 4| 5

Expected frequency 26.0 13.2 68 | 34 1.8

Here the expected frequencies of the outcomes Y = 5 or larger are small so we throw them together in the following
way: 53-(26.0+13.2+6.8+3.4) = 3.6. We now get the table

y 1 2 3 4 5-
Expected frequency 26.0 13.2 6.8 34 36
Observed frequency 26 13 9 2 3
2 2
x2,, =26 2622'0) ;.48 336'6) =139 = p-value = P(z2(5-1-1)>1.39)>> 0.10.

There is thus no reason to reject the hypothesis of randomness.

Comment to EX 73 It has been recommended that expected frequencies under HO shall be larger than
2 in the Chi-square test of fit (Stuart et al 1999, p. 409), earlier reccommendations were larger than 5.
In EX 73 all expected frequencies for y larger than 4 are definitely too small. At y = 3 there is an over-
representation of observed frequencies with Deviation = 2.2, but this isn't serious since the cell-Chi-

square statistic is only 0.71.
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EX 74 Challenge the computer in ‘thinking randomly’

The original series in EX 73 was actually made by a random number generator. (The function ranbin(0,1,p) with
p=1/21in SAS))

It is a challenge to try to beat the computer in ‘thinking randomly; as measured by the value of XéBS .

Write down a sequence of slightly more than one hundred 0’s and 1's. Try to place them in ‘random’ order, and repeat
the analysis made in EX 73. You will probably not beat the computer and it is even likely that the sequence you have
created will be rejected as random.

A tip! By the time you will learn from the table of observed and expected frequencies how to improve your skill. Then
it is time to challenge your friends in tournaments.

EX 75 The following table shows the treatment times (minutes) for patients at a clinic.

Treatment time 0-10 10-20 20-30 30-40 40- Total

Frequency 10 16 13 6 5 50

Mean = 20, Variance = 140, Max.value = 45

Test whether the treatment times have a Uniform(b) - distribution.

The cdfis F'(¥) =y /b, 0 <y < band a ML estimate of bis 5=My(n) 2%45:45.9.
n

Thus, the estimated cdf is ﬁ(y) =y /45.9 . The expected frequencies are.

50- P(0 <Y <10) = 50(F(10) - £(0))=10.9, 50- P10 < ¥ < 20) = 50(#(20) - £(10))=10.9
50- P20 < ¥ < 30) = 50(£(30) - £(20))=10.9,50- P(30 < Y < 40) = 50(F(40) - £(30))=10.9
50- P(Y > 40) = 50(1 — F(40))= 6.4 . Thus,

Treatment time 0-10 10-20 20-30 30-40 40-
Expected frequency 10.9 10.9 10.9 10.9 6.4
Observed frequency 10 16 13 6 5

,  (10-10.9)* (5-6.4)*
= +.+
oBs 10.9 6.4

This p-value isn't small enough to reject the hypothesis of a Uniform(b) -distribution. However, the sample size
is small and there are some suspicious signs of a positive deviation for the cell 10-20 and a negative deviation
for the cell 30-40 (although neither being significant). There seems to be reasons to search for a more realistic
probability model.

_ 537, pvalue = = P(32(5-1-1)> 5.37)=0.15.
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EX 76 Checkifa Gamma(A, k) - distribution gives a better fit to the data in EX 75.

ML estimates of this distribution are quite laborious to obtain (Cf. EX 44), therefore we confine ourselves with
Moment estimates (Cf.EX38) A =y /s> =1/7andk = y* /s* =29~ 3.
k-1
These estimates inserted into the cdf (Cf. Ch.2.2.2 (2)) F(y) =1- e‘ly Z(,ly)i /1! gives
i=0
F(y)=1-¢" (l +x/7+(x/7)° /2) From this the expected frequencies are

50-P(0<Y <10)=8.7, 50-P(10< Y <20)=18.6, 50-P(20 <Y <30)=12.9

50-P(30 <Y <40)=6.2, 50-P(Y > 40)=3.8.Thus,

Treatment time 0-10 10-20 | 20-30 30-40 40-
Expected frequency 8.7 18.6 129 6.2 3.8
Observed frequency 10 16 13 6 5

10-8.7)% (5-3.8)*
X? _{ o+
oS 8.7 3.8

The gamma distribution seems to give a much better fit to data than the uniform distribution.

= 0.90, pvalue = P(32(5-1-2) > 0.90)=0.64.
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EX 77 The production of goods by a particular method has since a long time resulted in 25% god, 62% medium and
13% bad products. In a test with a new method 50 products were produced. Of these 20 were god, 19 were medium
and 11 were bad.

Does the new method give products of a different quality or are the observed differences merely due to chance?

H,: The new method gives products of the same quality as the older method.

Let’s look more closely at the differences.

Quality God Medium Bad
Expected frequency 0.25-50=12.5 0.62-50=31.0 0.13-50=16.5
Observed frequency 20 19 1
2 2 2
x2, = 301257 (19-310)7  (=65)" )5 pvalue==P(z*(3-1-0)>12.3)=0.002.
12.5 31.0 6.5

(No parameters have been estimated.) There is thus a strong reason to reject H.

Quality God Medium Bad
Deviation +7.5 -12.0 +4.5
Cell-Chi-square 4.50 p<5% 4,65 p<5% 3.12 (NS)

The total Chi-square of 12.3 above shows that there is a significant difference. The table of deviations explains in a
way the nature of the difference. The new method involves an over-representation of god products and an under-
representation of medium products (NS is an often used abbreviation for ‘Not Significant’)

6.2.2 The Likelihood Ratio principle

To test the hypothesis H, :(6,,6,, ...)=(0,0\”,...) against H, :(6,,6,,...)# (6\”,0”,...) we
consider the Likelihood Ratio (LR) statistic A = I:O /L. Here I:O is the likelihood under H, with ML
estimators inserted for the parameters. L is the correspond likelihood under both H and H,, ie.
without any restrictions on the parameters. An obvious rejection region (RR) isA <c, or —InA >c".

(This follows because ) < A <1.) The LR test is performed in the following way:

1. Compute the ML estimates of the parameters under H, and under H, (26)

2. Compute the value of the LR statistic, say A 55 -

3. Compute the p-value for H, from the p-value :P(;(z(r—s) > —21nAOBS), where r = Number of parameters
estimated without restrictions on the parameters and s = Number of parameters estimated under H.

Notice that this test is a large-sample test. (Strictly speaking the test should be termed estimated LR test

(ELR), since estimates are plugged in for the parameters.)
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EX78

a) Make a LR test based on the fictive data in EX 70 to test H: p =1/2 against H: p # 1/2.
b) Compare the LR and the Chi-square tests when n =100and ¥, = 60.

n
J . Under H, we get
y

Ly =c-(1/2)"(1/2)". (There are no parameters to estimate.) The unrestricted ML estimate of p is

. ) ¥ n-y
p=yln :>L=c-(y/n)y(1—y/n)"_y:>A:L—P: c-(1/2)°(1/2) — =
L ¢ (/n)A-y/n)"”

= 2InA =2(yIny/n)+(n—-y)In[2( - y/n))).

a) The likelihoodis L =c- p” (1— p)"™, wherec = (

1
Qy/n) 0-y/m)

pvalue = P32 (1-0) > —21n A oy ).

b) Chi-square test
X (60-100-1/2)* N (40-100-1/2)*
100-1/2 100-1/2
LR test

= 4.00 = p- value = P(* (1) > 4.00)= 0.0455 .

~2In A =2(601n(2-60/100) + (100 — 60) In[2(1 - 60/100)]) = 4.03 = p - value =
P2 (1) > 4.03)=0.0447

The two p-values are roughly the same. In practice it will suffice to just notice that the p-values are below 5%, so H is
rejected at the 5% level.
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EX 79 Test of equality between two proportions in independent Binomial samples.

Often one is interested in comparing two proportions, e.g. the proportion of smokers among men and women. In
such a case one takes a sample of men and a sample of women that is independent of the first sample. (A sample of
couples is thus not appropriate.) Data can be summarized in the following way:

Sample 1 (Men) Sample 2 (Women)
Frequency Probability Frequency Probability Total
Smokers Y Y. Y +Y.
1 P 2 P> 1 T4,
Non-smokers
n =Y 1-p, n,—Y, 1-p, n+ny,—(Y, +Y,)
Total n 1 n, 1 n, +n,

We want to testH: p; = p, (= p) againstH:p, # p,
. . . . _ nl »n m—-y 7’!2 ¥ =y, . .
The unrestricted likelihood is L = pi'(1-p)) py:(1-p,) with two parameters to estimate.
N Va2

The likelihood under H is L, = & (nz Pl (1- p)ﬂﬁnz*(yﬁ)’z) with one parameter to estimate.

1 2

InL = const.+ y Inp, +(n, = y)In(1-p;) + y, In p, +(n, - y,) In(1- p,) =

dlnL:ﬁ_(”l_yl):o:lal:ﬂ, dlnL:ﬁ_(rzz—)/z):o:>l}2:y_2

dp, p (-p) n dp, p, (A-p,) n,

InL, =const.+(y,+y,)np+(m +n,—(y, +y,)In(l-p)=

dinL, y +y, (n1+”2_()’1+y2))_0:>A_J’1+)’2
= —_ el p_—
dp p (1-p) n +n,
N+ ny+n,=(y1+y,)
Nt), 1_(J’1+Y2)
n, +n, (n, +ny)

pat =y Y2 =y,
SZ0 I PO 0 R 0 P Y
n n n, n,

The p-value is finally obtained from P(;(2 2-1)>-2In AOBS)
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a)
b)

4]

a)

b)

4]

Method A 1 32 19

EX 80 LR test of equality between marginal proportions.

Show how the LR test can be used to test Hy: p,; = p;,(= p):in the 2 x 2 table.
Perform the test in the following case where two methods A and B are used to classify the same products into
two categories 1 and 2.

Method B

1 2

2 21 18

Test the same hypothesis by using a Chi-square test.

From EX 71 the estimated likelihood under H,is L, = ¢ - pi|' p*> ™ p33> , where the

. n ~ + n
estimates are p,, :&’p:y”z—y”,pzz Y
n

Ay A A A ~ Vi
is L=c-pil' D3i' Dis* P23 , Where the estimates are p, = 2 i, j=12.ThelR
n

. The unrestricted estimated likelihood

AVt

ratiois A =2 — 2 A =-2{(y, +y,,)Inp—yy, In py, — y,, In py, }. P-value=

P(2G-2)>-2InA )

~2InA s =3.9729 = p- value = P(;> (1) > 3.9729) = 0.0462.. H,is thus rejected at the 5% level. This

conclusion can of course also be reached by noticing that the RR consists of values larger than 3.8416 = (1.96)>.
_ _)’12)2

s Yt
P(;( @® > 3.92): 0.0472 , very close to that obtained by the LR test.

The Chi-square test is based on the statistic X? . In this case XéBS =3.92 giving the p-value

a)
b)

4]

EX 81 LR test of independency.

Show how the LR test can be used to test Ho: p;, = p;, p,; (independence) in the 2 x 2 table.
Apply the test to the following data illustrating the relation between left/right-handedness and type of twin
(identical = 1, fraternal = 2).

Type of twin
1 2
Right-handed 207 228
Left-handed 41 18

Test the same hypothesis with the Chi-square test.
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a) Under H, the likelihood is L, = c'(lA’1+ D )yll (ﬁ1+ “Dia )yI (132+ Dy )yl (132+ “Dia )yz ’

A Ve . N Yijt Y,
where p.. :M,lzl,Zandpﬂ' =
n

b j:1’2-

P A N Yij
The unrestricted likelihood is L = ¢ - plyl“plyz12 pzyf‘pé’éz , where p;; =—.

L
The LR statisticis A = Toand the p-value is P(;(z(?) —2)>-2InA 5 ) In this case the likelihood ratio can’t be

simplified as in EX 78.

b) After laborious computations we obtain —2In A ;¢ =10.21 and p-value is p(lz(l) > 10,21): 0.0014 .

3. Xjgs =9.97 and p-value is P(;(z(l) >9,97)=0,0016_ The following table is obtained for deviations:
Deviation/Cell Chi-square

Type of twin
1 2
Right-handed -11.4/0.59 11.4/0.60
Left-handed 11.4/4.37 -11.4/4.41

From the table it is concluded that the rejection of the null hypothesis is mainly due to a significant over-
representation of identical twins (1) that are left-handed.
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Comment to EX 81 The LR test for independence is laborious compared with the Chi-square test. The
latter is also more informative since the source of the total Chi-square can be explained in terms of
separate deviations. Today most statistical software present results for both tests, so ease of calculation
is not a problem. It may be tempting to report the p-value that is lowest and this seems often to be the

one obtained from the LR test, but in that case you lose the informative aspect mentioned above.

The p-values in EX 81 have been reported with too many decimals just to illustrate differences.

EX 82 In EX 62 a Cl for the ratio of two Poisson rates A, and Ay was used to claim a significant difference between
the rates. We now show how the same problem can be solved by LR testing.

Consider the hypothesis H: Ay = A, (= 1) againstH: Ay # A, .
Since the two samples are independent (Cf. EX 62) the unrestricted likelihood is

ANIO) N0
L= Me%x's .Me%v“ and the likelihood under H, is

x(s) »(t)
ix(s)er(t)sx(s)ty(t)efl(sﬂ)
0 = . From this the following estimates are easily obtained:
x($)!y(@)!
A x(s A t ~ o x(s)+ p(
i = (),/ly=y(),/1= () +x@)
K s+t
r ix(s)ﬂf(t)
The estimated LR reducesto A =—2 =" since many factors cancel each other. The p-value is
L 230

Plr22-1)>—2h Ay )-
85465 1557, =8 _1063,4, =8~ 1625,
814 8 p

This gives —2In A = 6.4791 = p - value = 0.0109 . The null hypothesis is rejected.

INEX62, s =8,7=4,x(8) =85, (1) =65= A =
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Ex 83 (Y )7 are iid with ¥, ~ N(a + fix;,0%) . Show how we can test H; S = 0 against H: 5 # 0.

(This model is the same as in EX 54 with the exception that there is a further parameter o # 0 )

1 p—
The unrestricted likelihood is L:;e_ﬁzm_a_ﬂx’ —~InL=c-"no? Z(J’, a- ﬂx)
Qr-c*)"? 2 207

dinL  —(D-2) (y,—a-fx,) . s A .
o = P :O:>Zyi:n-a+ﬂ2xi,y:a+ﬂ-x (i)
dinL (_1)'22xi(yi_a_:3xi) . A 2 inJ’i

dﬂ 20_2 leyl le ﬁle n

2
_+ﬁ2xl~ (i
n
dinl  n .1 0-1 L, D i—a-B-x)
= — — - — . _— =0 = (|||)
e ) WL a N >(( Z)ZJ & .
jo 2 xS v)n s,
(i), (ii) gives Zx _( x) In Sxx- (iv)
1
The likelihood under H,is L, :;/26—?2@,—«1) = 1InL, Z(yt a)
(27r~0'2)n 2 2o

dinL, —(D-2) (-
- = =
do 202

dnL,
dO' _7_2(.)/1 [

QL
Il

(v)

a2 52
)1]2036222(% Q) :(From(v):Z(yl 7)
n n

A2
The latter estimate, obtained under H is denoted 0 .
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L A2
EX 83 (Continued) Thus, A = TO = [”

A

A2

=1-r*

A2 n2 2
Thus, & = Sw=F 8wy Sw

G, Syr SeSyy

It follows that —2In A = —nIn(1 —r?).

n/2
3 J (Several factors cancel each other.)
0
— 2InA = nln 2% The pvalueis P(y2(2—1) > —21n Ay )
nA=n l'l?. p X n /A pgg |-
The factor S xy in (v) can be expressed in several ways, e.g. S, = Y (x, = X)(y, — ). Similarly Sy = D -%)7.
The A -test statistic can be expressed more simply. Z(yi —4- ,Bxl.)z = Z(yi —(7- ) - /}xl_)z =
S (-9 -5f = X0 -9+ B Y -9 28 (x, -, -7 =

Sy + B2S gy — 25 1y = [Notice that £S 1, = B2S | = Syy = B2S 1y -

, where ris the sample correlation coefficient.

If (X,Y) has a bivariate normal distribution it can be shown that the conditional expectation is
E(Y|X = x) =a + fx, where B =p-0y/0yand pis the population correlation coefficient. The hypothesis that

P = 0is thus equivalent with the hypothesis that p = 0 and can be tested in the same way.
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6.2.3 Miscellaneous methods

In this section we consider tests that are of a ‘common sense-nature’ This means that the test statistics
are sensitive to changes in the parameters and are used together with a proper RR. For example, when
there is a sample of observations on a variable ¥ ~ N(u, %) and we want to test H : 4 = 4 against H_:
M # U, it is obvious that we shall use a test statistic based on |)7 - ,u0| and reject H, for large values
of the latter quantity. There may be situations where it is less obvious how to perform a test. Then one
may use the Neyman-Pearson Lemma which states that, when testing H: 0 = 0, against H:0 # 6, , the
test with maximal power is obtained from the LR L, /L, < ¢ (cf. Ch. 20.10-20.13 in Stuart et al 1999.)
We will seldom need this Lemma since in the following applications the best RR agrees with the one

obtained by common-sense reasoning.

EX 84 Consider again the situation in EX 70 and EX 78 where we test H; p=1/2 againstH:p = 1/2.

t p=—,with E(p)=pandV(p)= . Intuitively it seems reasonable to choose the test statistic

LY p(1-p)
n n

T = ( ) p-1/2 . H, is rejected for large values of |T| or equivalently, for large values of

\/ HlH V1/4n

( j . However, this is exactly the same test that was obtained by the Chi-square principle.
1/4n

EX 85 Consider the situation in EX 79 where data were obtained from two independent Binomial samples with
proportions p; and p, and one wanted to test H; p; = p,(= p)againstH: P; # D,.

a) Construct a test of ‘common sense-nature’
b) In order to test a new vaccine 90 pupils from a school were vaccinated and 66 were not vaccinated. After six
months it was noticed how many pupils who had got a flue, with the following result:

Vaccinated (1) Not vaccinated (2)
With flu 4 18
Without flu 86 48
90 66

Test whether the vaccine has a significant preventive effect by using the test in a). Compare the result with that which
is obtained by using the LR test in EX 79.
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EX 85 (Continued)
by~ by~ E(p, — po|H,)

a) Test statistic: 7' = P — . Here E(f)1 —]32|HO)= p-p=0,
\/V(l% —p2|H0)

V(f) -p, Ho)z pad-p) + pd-p) = p(l_p)(LJrL].p is unknown and has to be estimated. In EX 46 it
n n, n,on, .
was seen that if (Yl )Ln are independentand Y; ~ Binomial(n,, p) then p = z iPi _ { p, = Yl} = z !
. 4L+7Y 2 nloom
is an ML estimator of p and also BLUE. In this case p = ——= . Thus, the test statistic to be used is
.. n, +n,
T D P . What about the distribution of 7"'?

A=), +1/ny)

Accordingtothe CIT 7—2 5 7 ~ N(0,1) as n;, n, — oo. By similar arguments as in EX 23 ¢) it then follows that
also T"has a limiting standard normal distribution. (Recall that Y, + Y, ~ Binomial(n, + n,, p) ) The latter
convergence is however slower.

H, is rejected for larges values of |T'| , 50 p-valueis 2 - P(Z > |T'OBS|).

A 4 . 18 " 4+18
b) From the table we get p, =—=0.0444,p, =—=02727,p= =0.1410, from which
0 66 90 + 66
0.0444-0.2727

~J0.141-0.859(1/90 + 1/ 66)

=—4.04 = p-value =2- P(Z > 4.04) = 0.00006

The LR test in EX 77 gives

22 156-22
A (22/156)*(1-22/156) — 2InA =16.8547 =

(4/90) (1-4/90)"*(18/66)* (1-18/66)" "

pvalue = P(y(2 - 1) > 16.8547) = 0.00004
[Don't calculate A directly, but instead In A = 221n(22/156) +...— (66 —18)In(1 —18/66) ]
Both p-values are very small and are close to each other. The conclusion is that the vaccine has significant preventive

effect ( p-value<0.001). Avoid statements such as‘H_ is rejected’ or ‘p-value = 0.00006’ if results are to be reported in a
scientific journal.

EX 86 In EX 62 two rates /1X and /1Y in a Poisson process were compared. A 95% Cl for the ratio R = Ay | Ay Was
(1.09, 2.17) and it was concluded that there was a significant difference between the rates.

The same data were analyzed in EX 82 by performing a LR test, giving the p-value 0.0109. The hypothesis of equal
rates was thus rejected.

Consider now a third way to analyze the data, by using a test based on the conditional Poisson property in (3).
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EX 86 (Continued)

A t
(Y(t)|X(s)+Y(t)=n)~Binomial(n,p:—YtjSOH0 Ay =4y & Hy: p=——_Here

Ays+ Ayt s+t
X(g):gs,y(4):65,]3:&:0_4333311(1 and H,: p=1/3against H, : p=1/3.
85+65
Test statistic 7 = P Do = 0.4333-1/3 =2.6025.Since T—2 7 ~ N(0,]) the p-value is
po(l=po)/n 12 1
3 3150

2P(Z > 2.6025) =0.0094 . The null hypothesis is thus strongly rejected (p-value < 0.01).

EX 87 In EX 51 it was shown how Cls for the parameters in the normal distribution can be constructed. Assume that
(Yl );':l areiid where Y, ~ N(1,0°).

a) Show how to test ) : p = g1, against H , @yt # 1.

b) Show how totest H, : 6° = o against H, : 6> # o .

o) Apply the tests with 1, =16.0 and O'g =0.4 when n=10,y =16.67, 2 =0.7312.

Compare these results with the results that are obtained using an approach based on Cls.

Y—u
a) T= S/\/;O ~T(n-1). (Cf.EX 51) pvalue = 2P(T(n 1) >|T, )
-1)s?
by T =%~ 7> (n—=1).(Cf.EX 51)) p-value = ZP(;(z(n -1)> Toas)
Oy

9 n=10, y=16.67, s> =0.7312.

Totest H,: u=16.0against A, : i #16.0 consider the test statistic

T = w =2.478 = p-value = 2P(T(9) > 2,478) =0.035. Here it suffices to conclude from a T-table that
4/0.7312/10
p-value < 0.05.

A 95% Cl for fLisgivenby ¥y + Ci, where C is determined by P(T(9) > C) =0.025= C =2.262.
n

Thus, 16.67 +2.262+/0.7312/10, (16.06,17.28) . Both approaches suggest that H, is rejected at the 5% level.

Totest H : c?=04 against 1, : o # 0.4 consider the test statistic 7" — 9-0.7312 _ 16.45 =
0
p-value = 2P(;(2(9) > 16.45): 0.116, so H, is not rejected.
2 2
A 95% Cl for o2 is given by @ <ol< (n=DS” , where a = 2.7004 and b =19.0228 (See EX 51 for details.)
a

This gives the interval (0.36, 2.44) and neither in this case is H, rejected.
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EX 88 Given two independent sets of iid variables (Xi )I”:XI and (Yl )”Y where X, ~ N(tt,,0%)and
2
Y, ~N(py,07)"

a)

i=1

2 2 . 2 2
Show how to test I, : 0y = oy againstoy # oy .

b) Show how totest H : tty, = py (= 1) against puy # u, .

<)

In two independent data sets one obtains

(nx =10, in =126, zxf = 1692) and (ny =8, Zyi =127, Zylz = 2122). Perform the tests in a)

and b) above and compare the results with that which are obtained by making Cls.

n, —1) which under

>

2 @2

Let the largest of the two sample variances be S)% .Then (Cf.EX 53) Zx Sy ~F(n, -1
2 @2

g2 Oy Oy ,

H, becomesS—g ~ F(ny —1,n, —1).The p-value (two-sided) is ZP(F(nY ~Ln, —1)> s_;, .

X X2

Notice that, if we for some reason, want to test H0 : 0')2( =cC- 03 then the test statisticis ¢ - —12/ .

X
X-Y-EX-Y|H X-Y
A suitable test statisticis 7T = ( | 0 ) =

JX-7H,)  Joiing+oiin,

2 2
If Oy and O’y were known then Twould be distributed V(0,1) , but in practice the variances are unknown

and has to be estimated. If the test in a) suggests that the variances could be assumed to be equal, = o’

2 2
, then we estimate this by 52 = (ny =DSy +(ny =DSy
- - ny +ny —2
. X-Y . . '
usedis T"'= . The p-value (two-sided) is 2P(T(nX +ny, —2)> |T 03s|)~
& (1/ny +1/ny)

. (Cf. EX 53.) It follows that the test statistic to be

If the test in a) suggests that the variances are unequal then we are faced with the Behrens-Fisher problem
mentioned in the Comments to EX 53.

When both 1 and ny are large things become simpler since we can use the fact that

X-Y

~ N(0,])
X-Y _\/U)z(/nX+0'§/nY b

S3ing +S3in,  \Siing+Siin,

TH

Z ~ N(0,])
1

2 2
\/O'X/HX +0oy/ny

The convergence in probability in the denominator above can be motivated in the following way: From (9b)
E(s2)=02% and V(52 )=const./ ny = $% —L—> 6% (CE.(10)). Similarly, S ——> &2 . (11a) and (11b)

then gives the result.
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EX 88 (Continued)

1692 —(126)* /10 2122-(127)%/8

A x=12.600,53 = =11.60,y =15.875,s = =15.13
10-1) y 8-1)
L2 2 : .2 2
Testof H,:0y =0y against H ,:0y # 0y
sy 15.13 ,
T=—= 1L60 ——=1.30=p-value= P(F(7 9)>1. 30) 0.34 . We can thus assume equal variances.
Sx

Testof H:py = py against H, 1y, # Uy

52 (0=D-1160+®=D1513 (0 1587512600 o 0

10+8-2 J13.14(1/10+1/8)
2P(T(10+8-2)>1.91)=2-0.0371 = 0.074 . We can't reject H, at the 5% level.

2 2 2
Sy Oy Sy

2
Sy-¢, oy Sy-¢

determined in the following way:

P(F(79)<c,}=0.025 can't be found in most tables, but P(F

A 95% Cl for the variance ratio is

(Cf. EX 53.). Here C and ¢, are constants that are

1 1

>—)=P(F(9,7)>1/c1)

»7) €

=0.025=1/¢, =4.82=¢, =0.21. P(F(7,9) > ¢,)=0.025=>c, =4.20

15.13 15.13
11.60-4.20°11.60-0.21

Thus, the CI is ( ) =(0.31,6.21), in accordance with the test result above.

A95% Clfor iy — fyis (Y — X)+C\/ (1/ny +1/ny)) (Cf.EX 53.). Cis determined by
P(T(16) > C)=0.025 = C =2.120.

Thus, (15.875-12.600 + 2.120,/3.14(1/10+1/8) =3.28 + 3.65 . Since the interval covers zero the difference

between the means is not significant.

EX 89 (Y: );':1 are iid variables with an arbitrary distribution and with £(Y;) = gand V'(Y;) = o . Show how to

test 1 pt = ftywhen nis large.

In EX 58 it was shown that

£ _D,7- N(0,1) as n — 0. As a test statistic we thus chose

T = Y_\'/uj and p - value is 2P( |T035 ) for a two-sided alternative.
n
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EX 90 (X,. )lnz"] and (Yl ):Zl are independent sets of iid variables with arbitrary distributions and finite means and

variances. Show how to test /1, : 11, = 1, when both sample sizes are large.

X-Y
The test statisticto useis 7' = ~ N(0,1).
\/S)z(/nX +8; /ny

An argument for the distribution follows from EX 88 b). In the latter case all variables were assumed to have normal
distributions. But, looking back at the proof it is seen that the numerator tends in distribution to a N(O,l) -variable
also for iid variables with arbitrary distributions.

The statistic above can also be used for constructing a Cl for the difference between means.

6.2.4 Nonparametric methods

In earlier chapters inference has been based on estimated parameters in probability models. Such problems
are said to be parametric, and others are called nonparametric. The distinction between the two methods
is not clear-cut. Test of independency or test of equal marginal proportions are sometimes referred
to as nonparametric methods, although a lot of parameters are involved. A tentative position is that
nonparametric methods are less affected by unrealistic assumptions. The latter are however also based on

assumptions, something that is often overlooked, especially that the observations are assumed to be iid.
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Goodness of Fit and comparison of distributions based on the sample-distribution function

We saw in Ch. 6.2.1 that the Chi-square test can be used to test the hypothesis that the observations in
a sample come from a certain distribution. This Goodness of Fit problem was solved by first estimate the
parameters in the hypothetical distribution and then compare observed and expected frequencies. In this
section we consider an alternative way to test for Goodness of Fit which we call the Kolmogorov test, also
called the Kolmogorov-Smirnov test, proposed by the Russian statistician A. Kolmogorov in 1933. An
important difference between the two tests is that in the Chi-square test the parameters are estimated,
but in the Kolmogorov test the parameters have to be specified (or known). A further limitation is that
the Kolmogorov test (in its original form) can only be applied to continuous distributions. Some attempts
have been made to use the Kolmogorov test when parameters are estimated, e.g. in the Exponential or
the Normal distribution. In the latter case the adjusted test is called the Lilliefors test and is provided

by many statistical soft-wares (e.g. in proc univariate in SAS).

The sample cdf , S,(»), is constructed in the following way. Rank all observations from the smallest

to the largest y;) <y <...<, . From the sequence (y(l.),i / nLl we then form the step function

S,(¥)=i/n, y4;y <Y <Yqu - As an illustration consider the data (1,2,2,5). Then S,(y)=0,y <1
—1/4,1<y<2, =3/4, 2<y<3, =3/4,3<y<5, =1, y>5.

H,:F(y)=F,(»), ( the hypothetical cdf with known parameters.)

The Kolmogorov test statistic is D, = max|S, (1) — F;( y)| and H is rejected for large values of D, . In
this case it is too complicated to compute p-values and a RR approach is simpler. The smallest values
for which H, is rejected (two-sided test) with the significance levels & =0.05 and 0.01 and for various
sample sizes n>1, can easily be downloaded from the internet. For large n (at least larger than 100)
the RR consists of observed values of D, larger than 1.36/ Jn with & =0.05 and larger than 1.63/+/n

with o =0.01.
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EX 91 Test whether the following ranked numbers are generated by a variable that is ~ Uniform [0,1]
.09.20.23 .29 .32 .34 .34 .37 .41 45 .53 .70 .83 .87 .94 .97

Hy:F(y)=F()=y.

We get the following table: (Notice that in this case F,(y) =y = Vi)

Y .09 .20 23 .29 32 34 .37
iln 1/16= 2/16= 3/16= 4/16= 5/16= 7/16= 8/16=
.0625 1250 1875 .2500 3125 4375 .5000
41 45 .53 .70 .83 .87 .94 .97
9/16= 10/16= 11/16= 12/16= 13/16= 14/16= 15/16= 16/16=
.5625 6250 6875 .7500 8125 .8750 9375 1

The largest value of D is |0.6250 - 0.45| =.175 and this is far below the rejection limit .3273 (a =0.05), so
there is no reason to reject the null hypothesis
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A different problem is to compare two distributions by means of the observations in two independent
samples. This was done several times in Ch. 6.2.2-6.2.3 by assuming a specific form of the distributions, e.g.
~ N(y,0%)and ~ N(uy,0°) . Now we will test the hypothesis H, : F}(x) = F,(y) without specifying
the form of the cdfs, which are assumed to be continuous. The latter hypothesis is also termed the
hypothesis of homogeneity. The test that is used will be called the Smirnov two-sample test, also called
the Kolmogorov-Smirnov two-sample test. N.V. Smirnov (1900-1966) was a great mathematician in the
former Soviet Union who won prices in many areas. (He is said to have won “the bronze star in vodka
distillation” in 1940, but this is may be a student jokes.)

The Smirnov test statistic is D,, = maX|Sm x-S, where S, (x)is the sample cdf from a sample

of size m and § (y)is the sample cdf from a sample of size n. H is rejected for large values of D,, .
Tables for the test can easily be downloaded from the internet. Critical values are given for each pair of
m,n (often denoted n;,n,) and for & =0.05 For o = 0.01. large sample sizes, say above 25, approximate
critical values are given by 1.36\/m and 1.63\/m for ¢ =0.01.

The Smirnov test shall in first place be used when very little is known about the distributional form, but
also as a complement to parametric tests in situations where it is suspected that lack of significance in

a test might be a result of choosing a bad probability model.
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Xi :76848687939.910.110611.2(m=9)

We make the following table of ranked observations:

X Yo Sy (x)=Sy(»)
52 0-1/15=-1/15
5.7 0-2/15=-2/15
5.9 0-3/15=-3/15
6.5 0-4/15 = -4/15
6.8 0-5/15 = -5/15
7.6 1/9-5/15 = -2/9
8.2 1/9-6/15 = -13/45
8.4 2/9-6/15 = -8/45
8.6 3/9-6/15=-1/15
8.7 4/9-6/15= 2/45
9.1 4/9-7/15=-1/45
93 5/9-7/15= 4/45
9.8 5/9-8/15= 1/45
9.9 6/9-8/15=2/15
10.1 7/9-8/15=11/45
106 8/9-8/15= 16/45
10.8 8/9-9/15= 13/45
112 1-9/15= 2/5= 0.400
113 1-10/15=1/3
15 1-11/15= 4/15
123 1-12/15=1/5
125 1-13/15=2/15
134 1-14/15= 1/15
14.6 1-1=0

the hypothesis.

Yi :525759656.8829.19810811.311.512312513.4146 (n=15)

EX 92 Check whether the following two samples of observations on the variables .X; and Y, are drawn from the
same population.

We obtain Dy, =0.400=18/45. (Tables of critical values of this test often show fractions) Since
P(D9,15 >19/45=~ 0.422)= 0.20 it is concluded that the maximal difference isn't large enough to reject the hypothesis

of equal distributions. In fact P(DQ’15 > 0.533): 0.05, so a much larger maximal difference would be required to reject
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The Smirnov test can be used to test the more general hypothesis H : F{(y)=---=F,(y),k=>2. If all
the k sample sizes are large, the p-value for H  can be computed quite easily, although the computations
may be heavy. It is wise to have a computer program that calculates the value of the test statistic. Due
to the usability in situations where it is hard to know the population distribution, we outline the test

procedure (following the work in Fisz 1963, p. 409).

Let the sample sizes be n,...n...n, and define the constants

K, =\nyn [(n, +n,),K; =\/n3(n1 +n,)/[(n, +ny +ny)...K, = \/nk(nl +o4n_)/(n +...+n)

Introduce the statistics

) (S +mS,)|

D, = max|S,(y) - S,(») (n, +1n,)

Sy () - gniSi(y)/ 3 n;

Put 4, =K,D,,i=2...kand 4,,,, = max (4, A, ). Then the p-value is 1- (Q(AMAX))/{_1 where
Q(A)is the Kolmogorov-Smirnov A -distribution. (Cf. Table VIII in Fisz 1963.)

, Dy = max|S;(y

D, =max]

The Sign Test and The Wilcoxon Signed-Rank test for One Sample

Let M be the population median in a continuous distribution. Then the hypothesis 4, : F(y) = F;,(»)
implies the hypothesis H,: M = M. E.g. if Y ~ N(u,0°) then M = u. When data consist of matched
pairs (X, );':1 one can reduce the problem of making inference from two dependent samples to a one-

sample problem by considering the differences D, = X, - Y,,i =1...n. In this case it is natural to test the

1 1

hypothesis H : M = 0 which is equivalent to H :P(X > Y): P(X <Y)=1/2.

The Sign Test for H: M = M, consists of computing the value of the test statistic Y = ‘Number of
observations below M (if suspiciously few are below) or above M, (if suspiciously few are above)’. By
suspiciously few we mean that they deviate much from the expectation n/2. Under H the test statistic

is distributed Binomial(n, p =1/2).

EX 93 Consider the following measurements of body temperature ( in degrees Celsius):
37.137.037.337.236.937.436.837.137.337.336.937.037.537.237.1
Are these data in agreement with the hypothesis that the median body temperature in the population is 37.0?

Since there are just 3 values that are below 37.0 we compute the probability p(Y < 3‘p = 1/2):
3

3
Z 15 (1/2)” (1/2)"5 =(1/2)‘5Z 15 :ﬂ:0,0176, So, the (two-sided) p-value is 2-0.0176 =0.035
y o\ 32768

y=0
and the hypothesis is rejected.
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The Sign Test for Matched Pairs is illustrated in the following example.

EX 94 Blood pressure measurements (in millimeters of mercury) were obtained before and after a training program
with the following result:

Subject 1 2 3 4 5 6
Before 1369 | 2014 | 1668 | 1500 | 1732 | 169.3
After 1302 | 1807 | 1496 | 1532 | 1626 | 160.1

Difference 6.7 207 | 172 | 32 | 106 9.2

Test the hypothesis that the median difference is zero.
Since there is just 1 difference that is negative we consider the variable Y =‘Number of differences that are negative’

and calculate the probability P(Y < 1|p = 1/2): ((6)}(1/2)0 (1/2)° +

(J(l /2)'(1/2)° = (1/2)°(1+6) = 0.109 . The (two-sided) p-value is 0.22 so the hypothesis can't be rejected by

the sign test.

As a comparison we use Student’s T-test (Cf. EX 87.) for the hypothesis that the mean difference is zero.
§:di:612,§:df:97646:327:102,ﬁ::é@7646—(6L2f/6):704440.

10.2-0

T=—+=2977= P(T(5)>2.977)=0.0155. So, the (two-sided) p-value is 0.031 and the hypothesis
4/70.4440/6 ( )
is rejected.

Notice that the latter test is based on the assumption that the observed differences come from a normal distribution.
Itis to be expected that tests that make use of more information about the distribution are more efficient (provided
that the distributional assumptions are valid). However, in the next example we introduce a nonparametric test that is
more efficient than the sign test and is nearly as efficient as the T-test.

The Wilcoxon Signed-Rank Test for Matched-Pairs

We will test H,:Fy(x)=F,(y)based on a sample of matched pairs(X l.,Yi)l'.':l. Proceed in the

following steps:

+,if D, >0
—if D, <0’
‘working’ sample size after this elimination is denoted #’. It is assumed that the differences are

- Form the differences D, = X, =Y, = Ties, i.e. cases with D, =0, are eliminated. The
continuous and have a symmetric distribution about 0.

- Rank the absolute differences from the smallest (1) to the largest (r’) and put a + or a - sign
above the absolute difference. If two or more absolute differences are tied for the same rank,
then the average rank is assigned to each member of the tied group. E.g. the six observations
6<7=7=7=7<8 are given the ranks 1, 3.5, 3.5, 3.5, 3.5, 6 since (2+3+4+5)/4=3.5.
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- Put T = ‘Rank sum for negative differences’ and 7*= ‘Rank sum for positive differences.
As a test statistic chose 7'=min(7",7")and reject H  if T <T,, where T_is the critical
value in the table. Tables are easily downloaded from the internet. A good table can be found
in Wackerly et al 2008, Table 9 in Appendix 3. The latter shows critical values for working
sample sizes up to 50 together with the p-values 0.10, 0.05, 0.02 and 0.01 (two-sided tests).

p-values can be computed in an exact way but this is complicated. For n > 50 one can use the
T —n(n+1)/4
n(n+1)(2n+1)/24
2P(Z > |ZOBS]§ :

fact that Z = has approximately a N(0,1) -distribution. So, the p-value is

EX 95 Consider again the data in EX 94. The following table can be constructed:

Sign - + + + + +
3.2 6.7 9.2 10.6 17.2 20.7

D

Rank 1 2 3 4 5 6

Fromthisweget T~ =17 =20=7T = min(l,ZO) =1. The critical value from the table in
Wackerly et al mentioned above is Tc =1 and this corresponds to a p-value less than 0.05. The exact
p-valueis 1/32 ~ 0.0313, very close to that obtained by the T-test in EX 94.
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The Mann-Whitney U Test for Two Independent Samples

Also now we test the hypothesis H, : Fy (x) = F, (), but there are two independent samples (X, )LXI
and (Y, )?:Yl each with iid observations. The distributions may be discrete or continuous. Assume that

ny < ny . The test proceeds in the following steps:

- Putall the n, +n, observations together and rank them according to their magnitude, from
smallest to largest. Compute the rank sum for the observations that belong to the X — sample
and call this W.

- The test statisticisU =nyny +ny(ny +1)/2—W. Under H the distribution of U is symmetric
aboutthe expectation E(U) = nyny /2 Thisinturnimpliesthat P(U <uy)= P(U > nyny, —u,)-

- H, is rejected for extremely large or small values of U with two-sided tests. Critical values are
obtained from tables. We will show in the example below how p-values can be computed by
using Table 8, Appendix 3 in Wackerly et al. The latter gives values of P(U < u, )for sample
sizes up to 10 and u, =0,L,...,nn, /2.

U-nyny /2

Jnyny (ny +ny +1)/12

- For ny >10and n, >10 it can be shown that Z = is close to a N(0,1)

-distribution and p-values (two-sided) are obtained from 2- P(Z > |ZOBS|).
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EX 96 Consider the following two independent series of independent observations:

X: 51 32 11 57 47 38 62 44 42 35

y: 61 34 60 59 | 63 45 49 53 46 58

Test whether the two series come from the same population:
a) By using the Mann-Whitney U Test.
b) -“- with Normal approximation.

c) By using the T-test for two independent samples.

a) Put all observations together and rank those observations that are coming from the x-series.

32 34 36 38 41 42 44 45 46 47
Rank 1 4 5 6 7 10

49 51 33 57 58 59 60 61 62 63
Rank 12 14 19

Theranksumis / =1+4+5+6+7+10+12+14 +19 = 78 and the test statistic is
U=10-10+10-(10+1)/2-78=77.

The latter value is larger than the expectation, 10-10/2 = 50 . The p-value is thus
2- P(U > 77) =2. P(U < 23), [Remember the property of the U-distribution listed above.]

From the table we get P(U < 23) =0.0216. So, the p-value is about 0.04 and the hypothesis of similar populations
can be rejected (p<0.05, Mann-Whitney U Test.).

77-10-10/2
J10-10-(10+1)/12

b) The observed value of Z is =2.041 and p-value is

2. P(Z > 2.041): 2.0.0207 = 0.0414 . very close to the p-value obtained in a).

1
10-1)
1
10-1)

O Yx =449, 3 x> 20977, % = 44.9, 5% = (20977 - (449)? /10)=90.77

D =528,y =28642,5 =52.8,57 = (28642 —(528)* /10): 84.84

First we test H, : 0y = 0 [CF.EX88a)l.

2
S—)Z( =1.07=p-value=2- P(F(9,9) > 1.07) =2-0.46 =0.92 . There is no reason to reject the null
s

y

hypothesis and we can pool the two variances

52 (10-1)-90.77+(10-1)-84.44
(10+10-2)

=87.81.

Download free eBooks at bookboon.com

117


http://bookboon.com/

EX 96 (Continued) We then test H | : i, = u, [Cf. EX 88 b)]
44.9-52.8
J87.81(1/10+1/10)

According to this test we can't reject H_ at the 5% level.

=-2.041= p-value=2-P(T(10-1) > 2.041)=2-0.038 = 0.076 .

One reason to the failure of the T-test to reject the null hypothesis in this case, may be that the normality assumption
is violated. A histogram of the y-values gives the following pattern:

y 25-35 35-45 45-55 55-65

Frequency 1 1 3 5

The histogram suggests that the y-values are sampled from a population with a skew distribution rather than a
normal distribution, although the sample size is too small to verify this.

This illustrates the strength of non-parametric methods since these are not, or to less extent, dependent on the form
of the population distribution.

Fisher’s Exact Test of Independency

In EX 70 and EX 79 it was shown how independency could be tested in contingency tables, by the chi-
square principle and the LR principle, respectively. Both these tests require that the sample size n is large
and p-values are computed by using the asymptotic distribution. In small samples one can use a test
termed Fisher’s exact test to test for independence. Using the same notation for the cell frequencies in
the 2 x 2 table as in Ch. 6.2.1, we calculate the probability of a certain outcome in the four cells, given

that the marginal are fixed, from the expression

Vi !y, vyt
P(y117y129y21’y22): H, 2+, H, +2, (27)
Y Vi Vo Voo

The p-value is obtained by calculating the sum of probabilities of all outcomes in the 2 x 2 table that are

more extreme or equal to the observed outcome. This is illustrated in EX 95 below.

This test was first suggested by R.A. Fisher who discussed an experimental investigation of a lady’s claim
to be able to tell by taste whether the tea was added to the milk or the milk was added to the tea (‘the
tea drinking lady experiment’). In that case all margins were fixed since there were 4 cups of each type
and the lady was informed about this fact. However, the test is used also in situations where just one
margin is fixed, and even when only the total # is fixed. In the last case it is an example of a conditional
test where we condition on the margins in the present data, although we are aware of that the margins

will vary randomly from sample to sample.
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EX 97 The following 2 x 2 table shows the frequencies of the two variables lower back pain (yes/no) and sex (males
and females).

Lower back pain

Yes No
Sex Male 6 2
Female 1 19

a) Use Fisher's exact test to investigate whether the two variables are independent.
b) Answer the same question by using the Chi-square principle and the LR principle.

a) Construct tables with actual and more extreme outcomes given fixed margins:

6 | 2 8 7 1 8 8 0 8
11|19 |30 10 | 20 | 30 9 | 21|30
17 | 21 | 38 17 | 21 | 38 17 | 21 | 38
Table A Table B Table C
8130117121
According to Eq. (27) the probability of the outcome in Table A is orT111012%1 The sum of the probabilities of
the outcomes in Table A to Table Ciis 612111119138!
130!117!121! 1 1 1
8130117 + + =0.0620 . This is the p-value for a one-sided test. The
38! 6!2!11119! 7!1110!120! 8!0!9!21!

p-value for a two-sided test is usually found by doubling the one-sided value (McCullagh & Nelder 1983, p99) and this
is the simplest alternative, but there are also other more complicated possibilities (Rao 1965, p345). The two-sided
p-value is thus 0.1240.

The calculation of exact probabilities is tedious, but tables can be downloaded from the internet and even
calculators, e.g. ‘Free Fisher’s Exact Test Calculator’ which can be found on www.danielsoper.com . In SAS p-values
are obtained from proc freq by adding /chisq (see SAS manuals for details). The p-values obtained may vary slightly
depending on which alternative is used.

b) The Chi-square principle gives (cf. EX 70)

X2 =1.6378+1.3258+0.4367 +0.3536 =3.7539 , p-value = P(;(z(l) > 3.7539): 0.05027 . The latter is a two-
sided p-value that differs very much from the value 0.1240 obtained in a). It is obvious that the sample size n = 38
is too small for the Chi-square approximation to be valid. One simple way to deal with the problem is to use Yates
correction for continuity (Yates 1934, p217)

2 2
- —n/2f  (6-19-2-11]-38/2
Xia,eﬁ(ly“y” rara=n/2f | | ) =2.3635, prvalue = P (1) > 2.3635)=0.1242,
ViV V)i 8-30-17-21

very close to the p-value in a).

The LR principle gives (cf. EX 81)
P, =8/38,p,, =30/38,p,, =17/38,p,, =21/38,p,, =6/38, p;, =2/38, p,; =11/38,
Py =19/38 = —2logA = —2(—3.10014+ 1.58646+2.18822 — 2.58980): 3.83052

p-value = P(;(2 > 3.83052): 0.05033.This is close to 0.05027 obtained with the Chi-square principle. It seems to
be unknown how to obtain a corrected test statistic in this case.
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Rank correlation

Pearsons correlation coefficient for the correlation between two variables (cf. the section about
properties of P(¥1,¥2)in Ch. 2.1) is estimated by the sample correlation coefficient defined as
r=sy /SySy, where(n —l)s)z( = lez —(Z:x,-)2 /n, (n —l)s;‘; = Zylz —(Z:yi)2 /n and (n=1)sy, = ‘
in V= (Z xi)(z ¥;)/ n. However, the calculation of r requires that the scale of the variables is at
least at an interval level, i.e. that the operations addition and subtraction make sense. For ordinal (rank
order) data one may define other measures of correlation. The simplest is Spearman’s coefficient rg . Let
R(x;) be the rank of x among x,...x and let R(y;)be the rank of y.among y,...y , then s is defined as
r but with x; and y, replaced by R(x;) and R(y,) . The ranks for tied observations are treated in the same

way as was done for the Mann-Whitney U test. If there are no ties in both the x and the y observations

—Lde,wheredi = R(x,)-R(y,).

the computation of g can be simplified, rg =1 >
n(n~ —1)

7 can be used to test the hypothesis of no association between two variables in situations where it isn't
possible to obtain precise measurements, but only ranked values. In two-sided tests the null hypothesis
shall be rejected for large or small values of 7, (remember that —1<r; <1). Critical values are found in

tables, e.g. Table 11, Appendix 3 in Wackerly et al 2007. Tables can be easily downloaded from the internet.

EX 98 A person was asked to make an assessment about the ability of 10 subjects and rank them. The ability of the
subjects was then evaluated in a formal test. The result was

Rank Test (x) 1 2 3 4 5 6 7 8 | 9110

accordingto | Assessment (y) 3 4 1 5 6 | 82 (107]9

6
2 P=N=pr. =1-—
We find i rg 10-(100—1)

the hypothesis of no association between the ranked series? Referring to Table 11 mentioned earlier, one finds the

-52=0.685 . This is quite large, but is it large enough in order to reject

critical value 0.648 for & = 0.025 (one-sided test) and & = 0.05 (two-sided test). The conclusion is that there is a

significant association between the two series (p<0.05, Spearman’s rank correlation).

6.3 The power of normally distributed statistics

Let T be a statistic with mean @ and variance ¢ (6)/n . The variance is thus allowed to be a function of
the mean. An example of this is the sample proportion p =Y /n, where Y ~ Binomial(n, p), with mean
p and variance p(1— p)/n . In this section it is assumed that T is normally distributed or at least that

T-6

o(0)/n
show a general expression for the power and then we consider some special cases.

n is so large that 7 — can be assumed to be distributed N(0,1). In the examples below we first
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EX 99 A general expression for the power.
Find the RR for testing H, : @ = 6, against H , : @ # 0, when the type | error is ¢ , and determine the power.
The RR is obviously of the form |T - 90| >C,,1e.(T-6,)>C, or (T -6,)<—C,,where C_ is a constant that

dependson .

a= P(Reject H, |H0) (T 6,>C |H )+ P(T 6, <-C |H ) [Do the same operations on both sides

of the inequality sign.] = [ T-6, Ce ] P( -6, Cy j:

(6, /\F o(0,)/\n o(6, )/\F o(6,)/\n
C, C C
Pl Z> Z <——2*—— |=[Dueto symmetry]=2.P| Z > ——%—|.
( C )/IJ [ a(eo)/\/EJ ( a(eo)/&]
In the sequel we choose oz = 0.05, so %:1,96: Coos =1.96- 0-(6?0)/\/;.
o (6,)/In '
The RR, with & =0.05 ,is [T — 6| > 1.96 - 5(6,)//n (282)

The power is Pow(®) = P(Reject H, )= P(T'> 6, +1.96- (8)/\/n )+ P(T <8, ~1.96 - 5(6,)/n )=
[Do the same operations on both sides of the inequality sign.]=
T-6__0,+19: 0 (6,)/n -6 T-6__0,~1.9- a(e)/f—a
P + P
o)A o(9)/\n o0y o(8)/n

From this we get

o(6) (-6, o(6) (©@-6,) b
Pow(0) = P(Z>196 5@ o) Jn J+P(Z< ~1.96 50 o) \/Z] (28b)

In (28a) and (28b) o = (0.05 . If it is very important to not falsely reject the null hypothesis one should choose a
lower type | error. E.g. with @ = 0.01 the figure 1.96 is replaced by 2.575.
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EX 100 Find a RR for testing /|, : p =1/2 against H , : p #1/2, where p is a Binomial proportion, and study
the power.

In EX 23 b) it was shown that —— 2~ 7 can be assumed to be distributed N (0,1) for large n. Here

p(l=p)/n
E(p)=pandV(p)=p(1— p)/n,sointhiscase 6 = pand c>(0) = p(1 - p) . Putting this into Eq. (28a)
gives the following RR: |p —1/2| > 1.96M ~ L .
oo An

The power is from (28b):

Pow(p):P(Z>l.96 V2 __(p-l/2) \/;]+P[Z<—l.96 12 __(p-1/2) \/ZJ.

Vp-p) p(-p) Vp-p) p(-p)
The behavior of this power is studied when n =50 (pow1) and when n =100 (pow?2). The following program codes (in
SAS) computes the power and depicts the shapes of the powers in Figure 2 below.

Obs p powl pow2
1 0.1 1.00000 1.00000
2 0.2 0.99784 1.00000
3 0.3 0.82832 0.98699
4 0.4 0.28904 0.51631
5 0.5 0.05000 0.05000
6
7
8
9

data ppow;

nl=50; n2=100;

do p=0.1 to 0.9 by 0.1;
A=1.96/2/sqrt(p*(1-p));
Bl=(p-1/2)*sqrt(nl)/sqrt(p*(1-p));
B2=(p-1/2)*sqrt(n2)/sqrt(p*(1-p));
powl=1-probnorm(A-Bl)+probnorm(-A-B1);
pow2=1-probnorm(A-B2)+probnorm(-A-B2);
output; end;

proc print; var p powl pow2;

run;

0.6 0.28904 0.51631
0.7 0.82832 0.98699
0.8 0.99784 1.00000
0.9 1.00000 1.00000
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Figure 3

EX 101 Let (Y, )?:1 be iid observations where Y, ~ Exponential(A) . Construct a RR for testing

H ;A =4, against H, : 1 # A, when n s so large that the CLT is applicable. Also, study the power and notice
what happens if n is too small for the normality approximation to be valid, say n = 10.

E(Y,)=1/2,V(Y,)=1/2 = EX)=1/2, V()?)zl//lz ,sointhiscase @ =1/ A and o> (8) =1/ A* . For large n,
n

Y-1/2

N1/ n2?

(28a) gives the RR:

is distributed N (0,1).

1/ 2,
e

(28b) gives the power, where we notice that

[V =1/ 2,|>1.96

o(6) _ 1A ndH—HO _VA-1i2, =1_i.|tturnsoutthat

A
=—a =
o Ui 4 o0 1/ o

the power is a function of 4/ 4,:
Pow(A/ 2y) = P{Z >1.96- (A1 4y) = (1 = (A1 AW )+ P\Z <=1.96 - (21 2g) — (1 = (A/ Ay )W).

The latter expression is obtained under the assumption that n is large. When n = 10 the power is illustrated in Figure
3 above. It is seen that the power is very weak for = ﬂ,/,lo > ] and perhaps more interesting is that the type | error
can be smaller for r > 1 than for r = 1 (the value under H0 ). Such a test is called biased.
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6.4 Adjusted p-values for simultaneous inference

We have been told to reject the null hypothesis when the p-value is small (less than 0.05). In this case
there is just one hypothesis to test. When we increase the number of hypothesis we increase the chance to
reject at least one of the hypotheses when it’s true. If « is the type I error for testing a single hypothesis,
one has to make the p-values smaller so that the significance level of a whole family of hypotheses is
(at most)a. When testing m hypotheses simultaneously the Italian statistician Bonferroni suggested that
each hypothesis is tested at the level a/m. This advice had the drawback that extremely small individual
p-values could be needed. An improved method was later suggested by Holm (1979, p. 65). The method
can be described in the following way: If there are m simultaneous hypotheses to be tested, rank the

p-values from the tests, from the smallest to the largest, p , <p,,, <... p,<.... Then claim simultaneous

significance for all p-values such that p;, < L’l . The method is illustrated in the following example.
m—i+
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EX 102 The following table shows the durations of a sick leave for various age groups.

Duration (Weeks)

-1 1-4 4- Total
Age -30 48 32 12 92
Group 30-50 35 26 40 101
(Years) 50- 12 24 52 88
Total 95 82 104 281

Is there an association between Age and Duration, and in such a case, which combinations can explain it?
The total chi-square is X > =47.35=p - value = P(;(z(4) > 47.35)z 107, so the association is very strong.

In order to search for an explanation to this we present a table with the measures Deviation / Cell Chi-Square
(cf. Ch. 6.2.1).

Duration (Weeks)

-1 1-4 4-
Age -30 16.9/9.2 52/1.0 -22.1/143
Group 30-50 0.9/0.0 -3.5/04 26/0.2
(Years) 50- -17.8/10.6 -1.7/0.1 19.4/11.6

There are four Cell Chi-Square measures that are relatively large so we rank their corresponding p-values. The latter
being obtained from a table showing X?and p = P(;(z(l) >X7?).

i 1 2 3 4
Cell Chi-Square, X? 14.3 11.6 10.6 9.2
p-value 0.0002 0.0007 0.0011 0.0024
0.05
S eEe—— 0.0056 0.0063 0.0071 0.0080
3.3-i+1

EX 102 (Continued) Here all p-values in the third row are smaller than the values in the fourth row. So, in the
corresponding cells there are simultaneous significant deviations (at the 5% level). The conclusion is that there is an
over-representation of members in the youngest age group with a short sick leave and also an over-representation of
members in the oldest age group with a long sick leave.

Notice that if we want simultaneous significance at the 1% level, there are only three cells that meet the requirement.

For the cell with X*> = 9.2 one gets the p-value .= (0.0024 > % =0.0016.
-4+

There are other ways to adjust for multiple comparisons. E.g. when testing for pairwise equality of three or
more means, one may apply the methods of Scheffe’ or Tukey. These are used within the field of Analysis of
Variance (ANOVA) and require that many assumptions are met. The so called Holm-Bonferroni method
just described has the advantage that it can be used generally, although more specialized methods may

be more efficient in certain situations.
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There is no clear-cut answer to the question ‘How many, and which hypotheses shall be considered in the
simultaneous inference?. When testing for significant individual cell deviations in an R x C contingency
table it is quite natural to set up R x C hypotheses. In other cases it may be harder to reach a decision

on this issue.

6.5 Randomized tests

In EX 69 it was noticed that with a discrete distribution, such as the Binomial, one can’t expect that the
type I error is exactly a. However, this can be achieved by introducing a further random component
to the RR. The methodology is illustrated in the following frequently cited example. (Observe that a

randomized test is not to be confused with a randomization test.)

EX 103 Let (Yl ):1:1 be iid with Y; ~ Poisson(A1) .We want to test H, : 4 = 0.1 against the one-sided alternative

H, : 1> 0.1 with a type | error (¢ ) of 0.05 and with n = 10

As a test statistic we take ZYl and reject H, if Z Y. > ¢ . This choice of RR seems obvious, but can also be

shown to follow from the Neyman-Pearson lemma. Since ZYZ ~ Poisson(nA) (cf. (3) in Ch. 3.1) we get, since
nl=10-0.1=1:

- 1 ave |
o= P(ZYI > c|HO): Z —‘e I_1-¢ IZ—' From this we can construct the following table:

y=c+1 y y=0."
[« 0 1 2 3
a 0.63 0.20 0.08 0.02

Since we can't find a value of ¢ which gives & = (.05 we reformulate the RR in the following way:

| If ) ¥, >3, reject H,, with probability 1
" |If >, =3, reject H,, with probability P

Now, 0.05=P(>%, >3, )- 1+ P> ¥, =3/H,)-P=0.02-1+0.0613-P

Thus p= 20320025 50605
0.0613
In practice this means that if Zyi >3 then H is rejected. But if Zyi =3 itis not clear if /{, should be rejected

until you have tossed a coin where e.g. the outcome ‘head’ means rejection.

The above example with P = 0.5 has inspired a lot of jokers to make fun about theoretical statistical
inference. An example: ‘Patient: - Am I going to die in cancer? Statistician: — I just got the result from
the lab but wait, first I have to toss a coin to decide about your future’ Randomized tests are not to be
used in practice for several apparent reasons. But, there is one important application for randomized tests,
and that is when the power functions of several discretely distributed test statistics are to be compared.

In that case it is important that the all the power curves start at the same level.
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6.6 Some tests for linear models
6.6.1 The Gauss-Markov model

Let (X,Y)be a bivariate random variable (cf. the properties (1)-(10) in Ch. 2.2.1). The conditional
expectation £ (Y |X = x)is called the regression function for the regression of Y on X and the conditional
variance V(Y| X = x) is called the residual variance. We will use the following notations for the population
parameters:
EX)=pu, EY)=p,,V(X)= 0)2(, V)= 0'5, JV(Y) =0y,Cov(X,Y) =0y, population correlation p = Tar
OxOy
E(Y‘X :x): Uy, =+ p-xif linear,V(Y‘X :x): o if constant.

An important special case is when (X,Y)has a bivariate Normal distribution. In that case

E(Y|X:x) a+ B-x,with g = pO-Y :O-—)gy, a=uy —f iy, V(Y|X:x)20'2:a§(l—p2) (29)

Ox Oy

In the Gauss-Markov model (Rao 1965, p179) the following assumptions are made:

( |xl )n  are independentand ~ N(a + [ - xl-,O'2 ). This can alternatively be expressed
i=

Yi=a+p-x +E1,Where( ),:1 areiidand ~ N(0,0%) (30)

The model in (30) is quite restrictive. It involves independency, linearity, constant variance and Normality.
The model is not proper for follow-up, or panel data, where measurements are taken from several
subjects that are followed in time. In the special case when o =0 the model is called regression through
the origin (cf. EX 54).

Corresponding to the population moments above there are sample moments.
2
Sy =Y (X, - X)* =) X7 - (Z )Z Sy = Y7 - (Z ") ZXY (ZX)(ZY

, where

— . SSE
=[S, estimators f=" 4=V -} %, 6% =
S v (n-2

Y
SSE = Z(Y d-p-x) = SYY ﬁ S vy (Cf EX 83) is the ‘sum of square for errors. From the assumptions

. S
sample correlation r=—4%

=2
in (30) it follows that 3 ~ N(,B —),a~N|a,c (— S—)J, 6’ ~o? l(( )) Furthermore, /3 and & are
Xx n-

independent of % and Cov(a ,B)——a X/Syy -
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Exercises in Statistical Inference
with detailed solutions Hypothesis Testing

EX 104

a) Showhowtotest H:f = f, against H, : f# fyand H,:ax =, against H , :a # .
b) The following data show the relation between Body weight in kg (x) and Body volume in liter (y) for twelve
4-year old boys:

X 17.1 105 | 138 | 157 | 119 | 104 | 150 | 160 | 17.8 | 158 | 15.1 12.1

y 16.1 104 | 135 | 159 | 116 | 102 | 141 | 158 | 176 | 155 | 148 | 119

Test the following hypotheses H, : f =1against H ,: f #1and H,, : @ = 0 against H , : & # 0 by considering
the regression of Y on x.

c) Repeat the analysis in b) but now by considering the regression of X on y.

)
? P =Py
h A2 2, h lo?/S -
M~N(O,l)anda—2~%(n 2): B =Py _NO /oxx N(0.1) ~T(n-2).
NESo (n=2)  [67/S,, 5 ~\/;(z(n-z)
o’ (n-2)

a-a
—2
| L S
n (n—=2)Syy

b) Y x,=1712, > x =2511.26, )y, =167.4, )" y] =2400.14, ) "x,y, =2454.51.

Similarly, ~T(n-2).

Sy =2511.26 — (171.2)% /12 = 68.8067, S,y =2400.14 — (167.4)* /12 = 64.9100,
Sy =2454.51—(171.2)(167.4)/12 = 66.2700

n2
j=062700 o6 4 _1395- 3.1427-021, > =42100=F7 688067 e
68.8067 12-2)
Hy:f=1, T 0961 =1.01=p-value=2- P(T(10) >1.01)=2-0.17=0.

~ J0.1088/68.8067

No reason to reject H .

0.21-0
2
0.1088 1 + (14.27)
12 68.8067

No reason to reject H ) . We have an example of regression through the origin.

Hy:a=0, T= =0.63=>p-value=2- P(T(10) > 0.63)=2-0.27 = 0.54

) Now the regression function is E(X|Y = y)= a+p'y.

Hy:B=1, T 102-1  _ 0.48=>p - value =2 P(T(10) > 0.48)=2-0.32 = 0.64.
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EX 104 (Continued)
1.02-1

= ~1.652 = p - value=2- P(2(10) > 1.652)=2-0.065 = 0.13.
J0.1148/(11-64.91) = Pp-value (210> 1652)

Hy:B=1, T

We can't reject ;.
0.024 -0

2
0.1148) L 4 13:99)
12 6491

No reason to reject j Ho .Very strong reason for regression through the origin.

Hy:a=0,T= =0.0l3=>p—va1ue=2-P(T(lO) >0.013)=2-0.495 =0.99

Comment to EX 104 Sometimes it isn’t crystal clear which of two variables that should be regarded
as dependent. In such situations one may try to let both be dependent and check whether the two
regression analyses give consistent results. Notice however that a regression relation is different from a
mathematical relation. From the mathematical relation y = & + £ - x one can solve for the inverse relation
x=—a/B+1/B-y=a+p"y.Eg. in EX 104 we don’t get &'=-0.21/0.96 =-0.22, but «'=0.024

Several Y-observations at each x. Test of linearity.

Dataisnow ((Y

, _ ] A . o
%X );:1 );1 = (Y1 X );:1 .. .(Y 4 Xk );:1 . The expressions for estimation and tests of parameters

are the same as above. The data (Ylj, X, )izl is interpreted as (¥;,,x, ),(¥;,,x,). The difference is that we
now can test whether there is one linear regression line through the data or not.

iYij an?, inixi
Jj=1

Introduce the notations ¥, =2, ¥

1

~
I
i
=
I
T

. Then the parameter estimates can be

=1 i=1

computed as 4 = anyl _Z(Z(n")/"xz)zn/ig/zni ,d=Y-j-
nx; =\ nx; n;

The hypothesis to test is H : E (Y |X = x)= a + - x . The test statistic for this is

Fe Zni(Yi _(d+ﬂxf))z fk=2) . The p-value for H  is P(F(k —2,271[ —k) >FOBS) B1)

PPN AR OIS

The test in Eq. (31) is illustrated in the following example.
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EX 105 Test the following (artificial) data for linearity:

X 1 2 3

Y 3,4,5 1,3 3,4,5

We first make the table:

Xi xi2 n; X nzxz2 ij )71 ntz nzxiz
1 1 3 3 3 3,4,5 4 12 12
2 4 2 4 8 1,3 2 4 8
3 9 3 9 27 3,4,5 4 12 36
Total 8 16 38 28 56
From this we get 3 _36-(28)(16)/8 _ 0, & _28_ 35
38—(10)*/8 8

The value of the test statistic can then be computed from the following table:

T [ [T ] e S, 7
1 3 3,4,5 4 3(4_3.5)2 -0.75 1+0+1=2
2 2 1,3 2 ] 2(2-3.5?=450 1+1=2
3 3 3,4,5 4 3(4_3‘5)2 =075 1+0+1=2
Total 8 6 6
6/(3-2)

The statistic is F = 6/5=3) " 5.00 = p - value = P(F(1,5) > 5.00) = 0.076 . The hypothesis of linearity

can't be rejected at the 5 % level. The p-value is however small and one should look for other alternatives than the

straight line.

Regression towards the mean- how to ‘lie’ with regression analysis

When people with extreme values of the measurements, such as high blood pressure, are measured once
more it is found that the mean of the extreme group is closer to the mean of the whole population. If
people with extreme values are treated with some medicine the decrease may be interpreted as showing
the effect of the treatment (a significant negative value of f8). The problem is that the mean level may go
down (significantly) even if people are not treated. This phenomenon, known as regression towards the
mean, can be explained by measurement errors and natural biological variations (cf. Davis, p. 493). It is
actually linked with the word “regression” used by F. Galton in a paper from 1885, who found that the
height of children from very short or very tall parents move toward the average. This false pattern is
more pronounced if we relate change with initial value. The following theoretical example is instructive
if you want to make an experiment which proves that your ‘hocus pocus drug’ has a significant lowering
effect on blood pressure, anxiety, cholesterol, body weight etc. The intention is of course that you shall

use the knowledge to reveal others, not to use it for their own purposes.
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Exercises in Statistical Inference
with detailed solutions Hypothesis Testing

EX 106 Regression of ‘Change’ on ‘Initial value’.
Introduce the following notations and assumptions:

Y, = Systolic Blood Pressure (SBP) at a point in time and Y, =SBP at a time later. Put D = Y, — Y. For simplicity it is

assumed that V' (¥}) =V (Y,) = 0% . The correlation between Py = —COV(YZI 1)

We are interested in the relation between ¥, and D . Assume that (Y1 ,D) has a bivariate Normal distribution and

consider the regression function E(D|Y1 =y )= a + [y, .From Eq. (29) we know that 3 = Cov(t,D) and
from Ch. 2.1 we get V()

Cov(%,D) = E(Y; - D) - E(Y,) E(D) = E(Y,(Y; - 1))~ E()(E(Y,) - E(Y)) = E(Yy) ~ E(R)E(Y,) -

E(Y) +(EX)) =Cov(Y,,Y,) - V(Y) =0’ py, —0* == (1- p,) = B=~(1~ p1,), which in
practice is negative.

The true regression line E(D|Y1 =) )will have a negative slope and it is thus likely that the estimated line also has a
negative slope.

s @book 1s probucen with iText®
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Multiple regression

The regression function is now £ (Y |X L= X X =X, )= a+ fBix; +...+ B.x; . The assumptions about
the variables (Yl.|x1,...,xk )7=1 are analogous to those in Eq. (30). Under the latter assumptions the best
estimators of the parameters are given by the OLS method (cf. Ch. 4.3.1). The estimators &, f3,,..., B
can easily be expressed in matrix form but this is beyond the scope of this book. The reader is advised to

obtain the solutions by running some computer program, e.g. the procedures proc glm or proc regin SAS.

Before considering the tests being of interest we make some comments about the variables X ... X,. The
latter are called independent variables in contrast to Y which is the dependent variable. The independent
variables may also be termed explanatory variables (often used by econometricians) or predictors. The
interpretation of a single regression parameter /3, is that it shows how much the expectation of Y changes
when x; is increased by one unit and all other independent variables are fixed. But, if the x-variables
are inter-related, or more or less collinear, this is impossible. Collinearity may lead to biased parameter

estimates with great variance.

One special form of independent variables is the so called dummy variable. Consider the following

examples:

- We want to study how Y = ‘Amount of savings’ depends on x = ‘Salary’ among men and women.

Introduce the dummy z =1 for men and z = 0 for women. The regression model can be written

o+, + (B + By)x,if z=1

E(v .
o+ px,if z=0

x,z)=a+ﬁ,x+ﬁzz+ﬂ3x-2={

This is a comparison of two lines, one for men and one for women. Hypotheses of interest are
if 3 =0 (parallel lines), or if B, =0and 8, =0 (identical lines). Here f, is a separate salary-
effect regardless of sex, /3, is a separate sex- effect regardless of salary and f; s a salary-effect
connected to sex. The latter parameter measures the interaction effect. When analyzing data
with this model in a computer the input data consists of values in 3 columns, Y, x, z. Then you

have to specify the model. E.g. in SAS you write the lines proc glm; model y=x z x*z;

- In the above example there was a comparison of two regression lines. When several regression
lines are to be compared things are a bit more complicated. Assume that we want to study how
Y = ‘Household expenditure’ depends on x = ‘Salary’ during the four seasons of the year. Since

there are four seasons we introduce three dummies such that

Season Z Z, Z3
Spring 0 0
Summer 1 0 0
Autumn 0 1 0
Winter 0 0 1
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The model can be written

E(y

This is a comparison of four parallel lines. If we allow the four lines to have different slopes

x,Zl,Zz,z3)=a + B+ Bizy + frzy + Pyzy =

a + fx, Spring

a + B, + fPx, Summer
o + B, + fx,Autumn

a + B, + Px, Winter

we add Bxz, + Bsxz, + Bexz; to the latter regression function.

Above we have defined dummies for two sexes and four seasons. In general, with c categories
we need c-1 dummies taking the values 1 and 0. In computer programs for estimating linear
models there may be other choices of dummies. The definition of those specific dummies that

have been used is seen in the beginning of the print-out.

The first result of interest in a multiple regression study is the ANOVA (Analysis of Variance) table.
This shows how the total variation of the Y —observations can be split up into two components. This is

shown in the following table:

Variance source

Degrees of freedom

Sum of squares

Regression (Model) k SSR = SST — SSE
n k R
Error n—k-1 SSE—Z Yl—(OAt-i-Zﬂjxl)
i=1 Jj=1
c 2
Corrected Total n—1 SST = Z(Yl - Y)

From the table we get an unbiased estimator of ¢*,67> =

We also get a measure of the fit of the linear model, the Coefficient of Determination R

is god. (Ris in fact the square of the Multiple correlation coefficient which is the correlation between Y
and @, + Z B X ) R’ can never become smaller when more x- variables are included in the regression

model. As a measure of the gain in explanatory ability by including x_, beyond x,... x one may use

2 2
Y‘le X - RY‘le x,

1- R?

Y‘le x,
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, i.e. the actual increase in relation to the maximal possible increase.

Y‘xIK x, = SST >
taking values in the interval [0, 1]. Values close to 1 indicates that the explanatory ability of the model
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Four classes of hypothesis to be tested

1)

2)

SSR/k

m.p-Value=P(F(k,n—k—1)>TOBS).

H,:AllB;=0,j=1...p. Test statisticis 7 =
This should be the first hypothesis to test and if it isn’t rejected there is no reason to continue,
but instead try to search for better explanatory variables.

A

A

V(B;)

H, :Some ,BJ. = (). Test statisticis T = . p-value =2- P(T(n -k-1)> |TOBS|).

Here ,é ; and I}(/? j) are found from the computer out-print under the names ‘Estimate’ and
Std error of estimate’ Notice that since 72 (f) = F(1, f) (cf. (11)and (12) in Ch. 3.1) the p-value
can also be obtained from P(F(l,n —k-1)> TgBS).

In this case it is perhaps more instructive to place a 95 % CI under each estimated ﬁA ;- The
latter is obtained from S, £ C,/ I}(ﬂj) where Cis determined from P(T(n -k-1)> C) =0.025.

SSE'-SSE)( k — k')
SSE(n—-k-1) )
the sum of square for ‘Error’ in the full model with k regression coefficients and SSE'

Here SSEis

Hy:Allg; =0for j=1...k'<k.Test statistic isT=(

is corresponding sum of squares in the reduced model with k —k' regression coeflicients.
p-value=P(F(k—k',n—k =1)> T, ).

This test is perhaps the most useful one. It enables us to see whether the model with regression
function «+ fx; +...+ fB,x, +...+ BiX; can be replaced by the regression function

o+ B X +...+ Bix, . The use of this test is illustrated in the following examples.
Tests about linear structures of the regression coefficients. Some examples are the following:

H, E (Y|X = x): a, + pyx . Here, o, B, and x have fixed given values. E.g. ¢, and f3, are the
intercept and slope that has been observed during a long time for a production process and

one wants to test whether a new process gives the same regression relation at x.

(a+ ﬂx) — (o + ByX)

He
n S vy

Test statistic is 7 = with p-value= P(T (n-2)> |T OBS|).

It is instructive to derive the above expression. Obviously, & + fx is unbiased for r + fx .
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V(o? + [fx): [Cf.Eq.(2)in Ch.2.1]=V(&)+ sz@)+ 2xCow(@, B) = az(l + ;_— +
n

SXX SXX

2] x’o?  2xxo?
XX

—2
= 02[1 + uj . Since ¢ and S each has normal distributions it follows that

n S vy

(@+ ) — (e + fo¥) _ N(0,1)- Now, dividing numerator and denominator in the expression for T

rla+ p)
above by V' (a + Bx) yields a statistic that is distributed as

N(0,])

V7 n=-2(n-2)

~T(n-2)-

An alternative to testing is to construct a CI for the true regression line at x:

—2
d+/§xiC\/o‘2(l+(x_x)], where C is determined fromP(T(n—2)>C)=a/2to get a

n XX

100(1 — )% CI. E.g. if we want a 90% CI when »n =12, then Tables over the T-distribution shows that

P(T(10)>1.812)=0.10/2=0.05, s0o C = 1.812. so C = 1.812.

For several x—variables the computations are heavy and will not be shown here. Results can be obtained

from most computer programs. E.g. in SAS the codes proc glm; model y=x1 x2 x3/clm p; will give
you 95% Cls for the expected means £ (Y |xl,x2,x3)= o+ pix, + pox, + fix,, together with predicted

(estimated) values.
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Another type of linear structure among regression parameters is the following
H,:p,=p(=p)in the regression function E(Y|X = x)= o+ fix; + Pyx, + fix5.

This has been termed a test of aggregation, in this case aggregation of the variables x, and x;. A typical
example is when Y is ‘Prices of clothing] x,is ‘Price of leather’ and x;is ‘Price of textile. If His not
rejected this means that the effects of prices of leather and can’t be separated. The simplest way to
perform the test is to run two regression analyses, one with x,,x,,x; as independent variables giving
rise to SSE , and one with x,,(x, + x;) as independent variables giving rise to SSE’. The test statistic is

7= SSE-SSE)(3-2) with p-value = P(F(1,n —4) > TOBS).
SSE( n—4)
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Exercises in Statistical Inference

with detailed solutions Hypothesis Testing

EX 107 Data below shows a sample of 12 persons employed in a company where Y ="Weekly earnings (in 1000 SEK)’
of various ages (year) and sex (0 = Woman, 1 = Man). Assume that the Y-values are normally distributed.

Weekly earnings 5 6 8 8 6 10 8 1 9 11 13 13
Age (x) 20 | 30 | 35| 35| 40 | 40 45 45 50 55 55 60
Sex (2) 0 0 0 1 0 1 0 1 1 1 1 1

a) Test whether the mean salary differ between men and women. (Use an ordinary T-test.)

b) Study if mean salary increases with age by using the model E(Y|x)= a + fx . From the out-print you get the
following results:

ANOVA table
df SS Parameter Estimate Std Error of Estimate
Regression 1 59.00 ¥ 0.20 0.036
Error 10 19.00
Corrected Total 11 78.00

Test H0 : ﬂ =0 and compute the Coefficient of Determination. (Std Error of Estimate in the table above is simply
NV (B)).
c) Find a proper regression model that describes how mean salary depends on both age and sex.

Model: E(Y|x,z)= a+ px+ p,z

ANOVA table
df SS Parameter Estimate Std Error of Estimate
Regression 2 66.2396 ﬁl 0.14 0.039
Error 9 11.7604 ,32 2.07 0.879
Corrected Total 1 78.00
Model: E(Yva): a+pix+frz+ fyx-z
ANOVA table
df SS Parameter Estimate Std Error of Estimate
Regression 3 67.1659 Y;; 0.10 0.060
1
Error 8 10.8341 ﬂ -0.61 3.358
2
Corrected Total 11 78.00 ﬂ 0.066 0.080
3

d) Comment on the following statement: 'It's true that men earn more than women, but this is due to the fact that
men at the company tend to be older than women and salary increases with age’
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EX 107 (Continued)

_ 33 225-(33)*/5
a) Women (z=0): J, =— =6.60,s;, :#21.80
5 5-1)
_ 75 825 —(75)*/7
Men (z=1): Yy =7=10.714, Sh, =T=3.5714
3.5714

R —
Hy.op =0y, F=

=1.984 = p - value= P(F(6,4) > 1.984) =0.26 . No reason to reject 1, .

The pooled variance estimate is 6> = 4-1.80+6-3.5714 =2.863.

4+6

Hy:py =y T=M=4.153:>p - value=2- P(T(10) > 4.153)=2-0.001=0.002 .

2.863 l+l
5 7

Reject H,, women have significantly lower earnings.

b) Hy:f=0,T =%= 5.56=>p-value=2- P(T(10)>5.56)=2-0.0001=0.0002 . Reject

Reject H ;, there is a strong linear relation between age and earnings.

, 59.00
Y 78.00

The Coefficient of Determination is R

=0.756 (76 %) .

x,z)z a+ pix+ pz

Hy: B, =0,T= % =3.59= p - value=2- P(T(9) > 3.59) = 0.006. Reject H,.

c¢) Model: E(Y

H,:p,=0,T= 207 535 p-value=2- P(T(9) >2.35)=0.043. Reject H, .

0.879
,  66.2396

Both x and z has a significant effect on salary. RY‘X’Z = 7500 =0.849 (85%).

x,z,xz)za +Bx+ frz+ Pyx-z

1
H,:,=0,T _ 010 g0 p-value=2- P(T'(8) >1.70)=0.13.. There is no significant effect of x.

0.060

Model: E(Y
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-0.61

H01ﬂ2=0,T=W=—0.18:>p—value=2~P(T(8)>0.18)=0.86. z.
0.066

Hy:B,=0,T=—"—""=0.83=p- value=2- P(T'(8) >0.83)=0.43. x-z.
0.080

In this case R§ = 67'1659: 0.861. The relative increase of R? by introducing X - Z is only

w22 78,00
% =8% . There is no point in assuming that there are two lines with different slopes
d) It's true that earnings increase with age, but it's also true that there is a separate sex effect on the earnings that
has nothing to do with the age effect.

6.6.2 Random Coefficient models

When repeated measurements are obtained in time from a sample of persons or companies, the Gauss-
Markov model in the preceding chapter can be very poor. This type of data is called panel data by
econometricians and longitudinal data or follow-up data by biometricians. The typical pattern in this
data is that measurements from each chosen sampling unit have its own development. When the latter
develop along straight lines, each line has its own intercept and possibly also its own slope. If the Gauss-
Markov model is used and one single model is fitted to the data, the conclusions can be totally wrong.
If each individual slope is positive, the line fitted by the Gauss-Markov model can be negative and vice
versa. This is nicely illustrated in Diggle et al, p. 1. Models where slopes and intercepts are allowed to
be random are called Random Coefficient models. A general exposition of these models is beyond the
scope of this book. Here we only illustrate the inference when intercepts are random and slopes are
fixed, Error Components Regression (ECR) models, and when both intercepts and slopes vary randomly,
Random Coefficient Regression (RCR) models.

Assume that measurements are made on n persons at the same times i = 1..., . (The latter assumption
will simplify the computations considerably.) The value obtained of the j:th person, j =1,...,n, at time i

is denoted YU . The two models are

ECR:Y,=A,+f-x +E,

RCR:Y;=4,+B, -x; + E;

The assumptions are: E, ~ N(0,62), A~ N(a,o?), B; ~ N( B.o2), Cov( 4;,B)=0 4. All other components
are uncorrelated. It seems hard to motivate all those Normality assumptions, especially that slopes have
Normal distributions, but the assumptions are needed to reach any results in the inference. In both

models E(Yij): a + f3- x;. In the ECR model V(Y,.j): o +o’and Cow(,,Y,,) = [cf. Ch. 2.1 Properties of

(V1,32 (7)] E((A/ +B-x +E4’,')(A_/ + B x; +E1{/))_(a +B-x)a+p-xp)=

E(AJ2 + A,y + AJE + AP, + BPxx, + BGE, + A Ey + ProEy + El.jEl..j)—
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> —apfx, —afx, — fx,x, =[Many terms cancel each other out]= E(Af)— *=V(4;)=c;. Thus, the
correlation between Y, andY,, is Cov(¥,.Y,,)/ m =o% /(63 +0?). So, there is a constant
correlation between measurements within each person. In the RCR model similar calculations yields
VY;)= o> +2x,0 4, + x7 05 and Cov(Y, o Yo = O3+ (X, +x,)0 45 + X,X,0 . From these expressions it
is seen that a simple test to decide whether data follows an ECR- or a RCR model is to plot estimates of
V(Y,-j) against x; . If the latter relationship is constant, then we have an ECR model. On the other hand,
if the relationship shows a quadratic pattern we have a RCR model. A formal statistical test that enables

us to choose between the two models is presented below.
— 1=
The following statistics will be needed. x = le, Y. = —z s Byy = ZYJZ - ;(ZY])Z
=2 (S50 = Py 27 ) Sy, ZYZ—- 27

Pi=—orsd; =Y, —ﬁjf,ﬂfz Aj"f‘ Z%Z&j’SSEj ZZ(Yij ~(g; +[3jxi))z =Sy, _(ﬁj)zsn’

(This last relation is proved in EX 81.) SSE = ZSSE]., Su= de —%(Zo?j)z,

Sps :Zﬁf ,ll(Zﬂj)z :
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The hypotheses to test are H,:ECRagainst H,: RCR= H,:c, =0against H, :c5 >0. The test
Spp/(n—1)

* SSE /n(t —2)

Jonsson 2003, p6 that this test statistic is identical with the test statistic F] in Hsiao 2003, p15. For the

statistic for this is 7=§ with p-value= P(F(n—1,n(t - 2))> T, . It is shown in Petzold &

more general model with k regression coeflicients the reader is referred to the latter citations. Since
computations can be quite heavy, the analysis with these types of models are facilitated by utilizing

soft-ware, e.g. proc mixed in SAS.
Depending on the outcome of the latter test we go further.

ECR model: 6

nt-)-1 """ n-1 f’V('B):nS( (@)=~

_SSE+S.Spy s _ By & s 6 1[A2
H,: =, against H  : B # 3, is tested by T:Mwith p—value=2-P(T(n(t—l)—1)>|TOBS|) .
VV(B)
—2 A2 A2
RCR model: 6'22 SSE ,6‘32 SAA _o".2 l+x_ ’&ézSﬁ_O—_’l}(ﬁA):l 6-§+O-_ )
n(t—2) n—1 t S n-1 S, n S

XX

XX

I}(d) is the same as for the ECR model.

H,:p=p,against H,: f # [, is tested by T =%with p-value=2- P(T(n -1> |T035|)-
VB
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EX 108

The table below shows the concentration of HbA1c (Glycosylated hemoglobin) measured at three points in time
(x; = 1,2,3 months) on 18 patients with diabetes. The purpose of the study was to see whether it is possible to
reduce the HbA1c level among patients by dietary advice.

j Y, Y ,Bj a,; SSE
1 646376 6.77 0.60 5.57 0.327
2 9.18582 8.60 -0.45 9.50 0.015
3 768268 7.53 -0.40 833 0.667
4 737370 7.20 -0.15 7.50 0.015
5 969787 933 -0.45 10.23 0.202
6 9.38.88.5 8.87 -0.40 9.67 0.007
7 837578 7.87 -0.25 8.37 0.202
8 817973 7.77 -0.40 8.57 0.027
9 867479 7.97 -0.35 8.67 0.482
10 828175 7.93 -0.35 8.63 0.042
11 747067 7.03 -0.35 7.73 0.002
12 6.86.7 6.5 6.67 -0.15 6.97 0.002
13 848879 837 -0.25 8.87 0.282
14 928988 8.97 -0.20 9.37 0.007
15 798274 7.83 -0.25 833 0.202
16 726864 6.80 -0.40 7.60 0.000
17 807670 7.53 -0.50 8.53 0.007
18 10.211.28.9 10.10 -0.65 11.40 1.815
Total -5.35 153.83 4298

X¥=2,5.=2,B, =15.1805,,8=%-(—5.35) =-0.297,4 =%~153.83 =8.546,5 ,, =28.1,8,, =1.127

H, :ECR against H, : RCR is tested by

T=2 L127/a8-D 0.55= p - value = P(F(17,18) > 0.55)=0.88 . No reason to reject the ECR model.

4.298/18(3 - 2)
0.187

:M:0.187’ 0 V() =——=0.0052
18G3-1)-1 182

For the ECR model, 42
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H,:p=0against H,: # # (s tested by
o 20297

~0.0052

strongly rejected.

=—4.12=p-value=2- P(T(18(3 —1) —1) > 4.12)=0.0001. This means that H, is

The conclusion is that there is a significant reduction of the HbA1c level and this reduction is similar to all patients
with a mean rate of about 0.3 units per month.

6.7 Final words

Statistics is not an exact science in the sense that there are clear-cut solutions to every problem. When
analyzing linear models you find two opposite schools. The ‘significance fundamentalists’ argues that all
non-significant parameters must be deleted from the model. The argument is that unnecessary parameters
‘steal’ degrees of freedom so that other parameters may not clear the 5% p-value threshold. On the other
hand there are ‘significance liberals’ who retain all parameters in the model that they find interesting.

The author’s personal view is close to that of a ‘significant fundamentalist’

The square root of the estimated variance of a statistic is called Standard Error of Estimate. This is an

old fashion name, but is now common in computer printouts.
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Recall that there are two different ways to test for equality rates in a Poisson process. One is based on

interval data, intervals between events (EX 80), and one based on counts, or frequency data (EX 84).

In this book you find several examples of tests of linearity in regression models. This is an area that has
been overlooked. Many examples where significance can't be established may be due to the fact that a
linear model is used where a non-linear model would be more adequate. Closeness to linearity is often
said to be measured by R?, the coefficient of determination. However, the F-test in (31) Ch. 6.6 is much
more efficient in detecting deviation from linearity. In EX 146 where linearity was rejected by the F-test,

one obtains R? = 0.969 , which is large.

As you have noticed, tests of hypotheses in linear models require heavy computations. It is therefore
desirable that you supply reliable statistical software to your computer. This is of special importance
when dealing with random coefficient models (Ch. 6.2.2) where more or less sophisticated software are

available under the name of ‘mixed models’

When communicating results from a statistical analysis you should avoid expressionslike “H , against H,”.
(This is for internal use among statisticians.) Instead use formulations like “The new method gives

significantly lower values than the old method (p<0.01, two-sided Sign test), just to take an example.

Supplementary Exercises, Ch. 6

EX 109 Gregor Mendel is said to be the founder of the science of genetics. He performed a large number of
experiments to test his theories and much of these data are still available. In one famous experiment he cross-
pollinated smooth yellow pea plants with wrinkly green peas with the following result:

(Shape, Color) (Round, Yellow) (Wrinkly, Yellow) (Round, Green) (Wrinkly, Green)
Theoretical 9/16 3/16 3/16 1/16
proportion
Observed 315 108 101 32
frequency

a) Make a 2 x 2 table of the observed frequencies in terms of the factors Color and Shape.
b) Test whether the observed frequencies are in accordance with Mendel’s theory.

EX 110 The number of white blood cells per cubic millimeters is known to vary according to a Poisson distribution.
10 blood samples from the same person showed the following number of white blood cells: 81 38 63 63 50 63 69 50
3831.

a) Compare the sample mean and variance. Conclusion?
b) Use the Chi-square principle to test whether the observations come from the same Poisson distribution.
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EX 111 The number of persons being on sick leave per day was recorded at a department, with the following result:

Number on sick leave 0 1 2 3 4 5-

Frequency 12 10 6 0 2 0

Determine whether the Poisson distribution is an adequate model for the outcome.

EX 112 The Normal distribution is often taken for granted without giving any support for this assumption. Show how
the Chi-square principle can be used in order to test whether the following (ordered) data can be assumed to be
Normally distributed:

23232427293132333536363740424343444548485454565757585858585961616263 6465666868
7073747577 8187899397

[Hint: Use some classification, e.g. -39, 40-60, 61-80, 81-.]

EX 113 Several independent Binomial samples.

In EX 77 and EX 83 the proportion in two independent samples were compared. Consider now (Yl )1]'{:1

Y, ~ Binomial(n,, p,)and H,:p, =...= p,(= p).

where

D Y.
Under the null hypothesis 5 = Zn,p, = Z ' is BLUE (cf. EX 46). The statistic for testing H,is
n, n,

1 1

1 P
(Rao 1965, p.333) T :oni(pi —p)* ~ x> (k—1)under H,, -
p(1-p)
Consider the following Norwegian data:

Season Spring Summer Autumn Winter
Number of born boys 9251 7967 7327 7662
Number of births 17866 15408 14251 14885

Test whether the proportion born boys is the same for all seasons.
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EX 114 Test for independency between (A, Non-A) and (B, Non-B) in the following three contingency tables
(fictive data).
Group 1 Group 2
B Non-B Total B Non-B Total
A 10 40 50 A 60 40 100
Non-A 20 80 100 Non-A 30 20 50
Total 30 120 150 Total 90 60 150
Group 1+2
B Non-B Total
A 70 80 150
Non-A 50 100 150
Total 120 180 300
Conclusions?
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EX 115 In a sample of 100 couples, the husbands and wives were asked about their opinions about a politician. The
result was:

Husband
Positive Negative
Wife Positive 6 10
Negative 24 60

a) Estimate the proportion positive husbands and wives, respectively. Determine whether the difference between
the proportions is significant by using the Chi-square and the LR principles.
b) Are the opinions of husbands and wives independent?

EX 116 In a medical rehabilitation project patients with different degree of estimated working capacity (low, medium,
high) received different types of training (physical, activation, education). The following frequencies were obtained:

Working capacity
Low Medium High Total
Physical 119 80 21 220
Type of training Activation 363 50 34 447
Education 23 12 4 39
Total 505 142 59 706

Is there an association between estimated working capacity and the type of training? If so, investigate which
combinations are over/under-represented.

EX 117 During a severe epidemic 40 % of the population were on sick leave. A telephone survey to five randomly
chosen institutions at a University gave the following result:

Institution no 1 2 3 4 5
Number on sick leave 4 10 8 2 6
Total number of employees 10 42 25 11 12

Test whether University employees are on sick leave to the same extent as the rest of the population.

EX 118 In a factory there were 10 accidents during 2 weeks. After this equipment were renewed and during the
following 3 weeks there were 5 accidents. Did the measures have a significant effect on the rate of accidents?

[Hint: Use the conditional Poisson property and compute p-values from the Binomial distribution.]
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EX 119 The conditional Poisson property can be generalized to k independent Poisson processes of rates ﬂ,l.../ik :

n! ” y At
PYl(fl)=y1,---,Yk(tk)=yk‘ZY,»(fi)=n =ﬁp1 -~-pk",wherepi= ,i=1..k .The
Yisee yk' zﬂﬁti
3
hypothesis H, : A, =...= A, (= A) is thus equivalent with H,: p, =<=—,i =1...k. It follows that the latter

>
(Y -n(,/Y 1) :Z(Yi —n/kY

nlk

hypothesis can be tested by X*= Z for a Poisson distribution

(cf. Stuart et al 1999, p. 393). n(t,- /Zti)

Test whether the data 19 16 20 25 are observations on the same Poisson distributed variable.

=10, : . . .
EX 120 Let (Yl )?:1 be iid with Y, ~ Exponential() . Derive the RR for testing H,y: A=A against H, : A=A,

at the 5% level. Consider the case n = 10.

[Hint: Use the Neyman-Pearson Lemma, mentioned in Ch. 6.2.3 and the property (5) in Ch. 2.2.2]

EX 121 Let (Xi )l":Xl and (Yl ):Zl be two independent sets of iid variables with Exponential distributions with

parameters A, and A, , respectively. Show how the LR principle can be used to test H, : A, = A, (= 1) . Perform

the testwhen 7, =40, x; =20,1, =60, Yy, =40.

EX 122 Let ( i);’:] be iid variables where Y; ~ Geometric(p).

a) Show how to test H,: p=1/2against H, : p#1/2by means of the LR principle.
b) Perform the test when #=50and Z ¥, =80.

c) Give examples where this test may be of interest.

EX 123 16 persons participated in a weight loss program. The body weight (in kg) of each person was measured
initially (X) and after six months (Y). The following values were obtained of the difference D=X - Y (in increasing
order):

-1.8,-1.7,-14,03,06,1.6,1.7,1.9,23,24,2.8,3.7,45,5.8,6.3,6.8
Let u, =E(D)andtestH: u, =0against H,: 1, #0

a) By assuming that differences are normally distributed.
b) By performing an exact Sign test based on the Binomial distribution.
c) By using a normality approximation of the test in b).

[Hint: In the last case the approximation can be improved by letting
4 YEW)+1/2 y—E(Y)-1/2

JV(Y) Jr @)

P(Y<y)=P and P(Y < y)~ P| Z < ]
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EX 124 The same products were classified as Bad or God by Municipal- and State authorizes. The result was

State
Bad God
Municipal Bad 20 10
God 20 50

a) Test whether the classifications agree by testing equality between marginal frequencies.
[Proportion Bad will suffice.]
b) Test whether the classifications from the two authorities are independent.

EX 125 Yeast cells were counted in a hemacytometer with the following result:

Number of yeast cells per square 0 1 2 3 4 5 6

Frequency 103 143 98 42 8 4 2

Check whether the frequencies are in accordance with the Poisson distribution

EX 126 At an industry men are working in three shifts: Morning, Day and Night. From each shift a random sample
of 200 products were chosen and the number of defective products was recorded with the following result: 12 for
Morning, 10 for Day and 23 for Night.

Use a Chi-square test to draw conclusions from the data.

[Hint: Construct a 2 x 3 table and test for independency.]

EX 127 Use the test for a difference between two Binomial proportions (Cf. EX 85.) to draw conclusions from the data
in the preceding example. You may have to adjust the p-values for multiple comparisons (Cf. Ch. 6.4.).

EX 128 In a study it was found that 41 of 248 identical twins were left-handed and that 18 of 246 fraternal twins were
left-handed. Is the difference significant?

EX 129 In the middle of 1950 the SALK vaccine against polio was tested in USA in several multi-center studies. In one
such study 20 000 children were vaccinated and among these 1 case of polio was detected, compared with 114 cases
of polio among 473 000 unvaccinated children. What conclusion can you draw about the effect of the vaccine?

EX 130 In a sample of 300 families the standard of the electronic equipment was classified as Cheap or Expensive.
The families were also classified according to social class as Low-Middle-High. The result was

Class
Low Middle High Total
Standard Cheap 38 88 31 160
Expensive 62 42 39 140
Total 100 130 70 300

Test whether Standard of equipment and Social class is independent and if not, try to find some significant patterns.
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EX 131 In 2012 the yearly incidence of malignant melanoma in Sweden was 35 cases per 100 000 person. The same
year 60 cases was observed in the city of Malmo in southern Sweden, with 110 000 inhabitants. Does this indicate
that inhabitants in Malmé had a significantly higher risk for malignant melanoma than people in the rest of Sweden?

EX 132 A dealer takes a sample of 200 oranges from a large batch from his importer. He notices that 19 of these are
of bad quality while the rest are acceptable. In a delivery from a new importer he finds that 10 oranges of 200 are bad
while the rest are acceptable. Shall he prefer the new importer?

a) Discuss whether a one-sided or a two-sided test is preferably.
b) Test whether the proportion bad oranges is the same with the former and with the new importer.
c) Use the ordinary Chi-square test to test for independency between Quality of oranges and Importer. Compare

the result with b).

EX 133 In a school with 156 pupils 90 were offered vaccination against a certain disease. After half a year the effect of
the vaccination were studied, with the following result:

Diseased Not diseased Total
Vaccinated 4 86 90
Not vaccinated 18 48 66
Total 22 134 156

Did the vaccination have a significant effect?

[Hint: Repeat the arguments that was given in the preceding example a)-c).
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EX 134 A certain kind of surgical treatment may lead to complications. A comparison of two methods gave the
following frequencies:

Old method New method Total

Complications 15 1 16
No complications 83 46 129
Total 98 47 145

Is the new method better than the old method?

a) Use the Chi-square test for independence.
b) Use Fisher’s exact test.

EX 135 A comparison of life lengths (hours) between two types of bulbs gave the following result:

Sample size Mean Stand. Dev.
Type A 20 1128 62
Type B 20 1236 83

a) Test whether there is a difference in quality between the two types of bulbs under the assumption that life
lengths are normally distributed.

b) Repeat the test in a) but now without assuming that life lengths are normally distributed. [Hint: Use the CLT.]

EX 136 Two varieties of wheat A and B were grown in 12 different areas. The yield is summarized in the following
table:

Area 1 2 3 4 5 6 7 8 9 10 1 12

A 24 | 16 | 21 24 | 26 12 17 21 25 19 | 29 | 22

B 21 17 | 20 | 25 21 13 15 19 | 21 22 24 | 22

Assume that yield in an area is normally distributed and test whether the difference in yield is significant.

EX 137 We have seen how the Chi-square principle can be used for a variety of tests. Here is another example, called
the Median test. (There are several versions of this test.)

The population median is defined in Ch. 2.1. As an estimator of this one may take the sample median, defined as the
middle point of the ranked data in a sample, or the average of the two middle points in case of an even sample size.

Test whether the following two series of data come from populations with the same median.

A 44 40 46 22 51 41 48 38 58 60 28 40

B 24 54 80 35 36 23 15 21 43 18 12 29

[Hint: Rank the observations in each series, compute the sample median m for the combined series and count the
number of observations that are above or below m in each of the two series. Then you summarize the resultina 2 x 2
table with frequencies of the two variables (above m /below m) and (Series A/ Series B). The classical Chi-square test
will then give you the answer.]
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EX 138 A beer-tasting Binomial experiment. 4 glasses of beer A and 4 glasses of beer B are served sequentially in
random order to a person who has to decide which of the beers he is tasting.

a) How would you in practice arrange the experiment so that the variable Y = ‘Number of correct answers’
~ Binomial(n =28, p =1/2)? Why assuming that p =1/2?

b) Assume that the person gives correct answers in y cases. What is the smallest value of y for which the hypothesis
H,: p=1/2is rejected by a one-sided test at the 5% level?

c) When people are appointed as professional tasters of beer, coffee, tea, etc. they have to undergo tests in very
long series. Assume that the person has to compare 50 glasses of beer of each kind instead of 4. Which is the
smallest number of correct answers required to reject the hypothesis in b)?

EX 139 In 160 families with four children the number of boys (Y') was:

Y 0 1 2 3 4

Frequency 6 38 58 47 11

Test whether the frequencies are in agreement with a variable that is distributed Binomial(n=4,p =0.516).
[Hint: See EX 4]

a) By using the Kolmogorov test.
b) By using a Chi-square test.

EX 140 Independent measurements of viscosity for a certain substance were measured during two days with the
following result:

Day1:37.0 31.4 34.4 33.3 34.936.2 31.0 33.5 33.7 33.4 34.8 30.8 32.9 34.3 33.3
Day2:28.431.3 28.7 32.1 31.932.8 30.2 30.2 32.4 30.7

Has the population distribution changed from one day to the next?

a) Use the Smirnov two-sample test. [Hint: Rank the observations within each sample and estimates the two
sample cdf’s as described in CH. 6.2.4. Then search for the largest difference between the two cdf’s. It could
help to make a plot.]

b) Compare the result in a) with the result that is obtained by assuming that both series are normally distributed.
Conclusions?

EX 141 Repeat the analysis of the two varieties of wheat in EX 136 by using the sign test.

EX 142 15 student were ranked according to their results in Mathematics and Statistics with the following result:

Math. | 3 5 1 12 |10 |8 |6 |9 |2 15 13 7 1 | 4 14

Stat. 2 1 3 15 |12 |5 |9 |4 |6 13 14 10 |7 8 11

Is there a significant association between the two series? [Hint: Compare with EX 98.]
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EX 143 In a clinical trial one wants to study the effect of a drug on the concentration of a substance in blood. In
a pilot study where the concentration was measured before and after the drug was added, the following result
was obtained:

Before 1.10 | 0.98 095 | 099 | 1.05 | 1.20 | 0.96 | 1.07 | 0.96 1.06

After 1.05 | 0.95 0.90 | 098 | 1.01 1.08 | 094 | 1.08 | 0.98 1.04

The hypothesis of interestis [, : 1, =0against H, : u, #0.

a) Testthe hypotheses by means of a p-value argument under the assumption that the mean difference is normally
distributed. Give reasons for the assumption.

b) Let the estimates from the pilot study represent the true population parameters and assume that the variance
of the difference is the same under H and H , determine a rejection region (RR) as a function of the sample
size n under normality assumptions. The type-I error is 0.05. [Hint: Cf. Ch. 6.3.]

c) Study the power function for the test in b). For which values of 1¢/, is the power larger than 0.90 when n =100?

EX 144 In 2003 it was found that the proportion disabled (p) who were full-time workers in service profession was
8%. Ten years later it was decided to plan a study to see whether this proportion had changed. In a sequentially
collected sample it was found that the proportion stabilized around 3/20 = 0.15.

The hypothesis to testis H, : p =0.08 against H, : p # 0.08 . Determine the sample size, n, required to get a
power of at least 0.90 when p = 0.15. Also, determine the rejection region (RR).
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Exercises in Statistical Inference
with detailed solutions Hypothesis Testing

EX 145 (Y )"’7 are iid with ¥; ~ N(u,0%).One wants to test H, ol = 0'3 against A, o’ # 0'3 based on the

iJi=1

test statistic 7= (n—1)S* = Z(Yl —Y)? with a type-I error of 5%.

a) Specify a RR of the form T < a or T > b and derive the power function.
b) Let n =10 and study the power as a function of R = O'g /o2,

EX 146 In EX 120, where iid observations were distributed Exponential(1), we determined the RR for testing
H,: A= 2,0 against H,: A+ /10. Express the power of this test as a function of the ratio

R= /1/10 . For which values of R are the power larger than 0.90?

EX 147 A new rapid method to measure concentration of a certain substance was tested against an exact method
with the following result:

Exact method (X) 1 2 3 4 5 6

New method (Y) 1.2 1.9 3.1 42 47 59

a) Apply the model E(Y|x)= a + 3 x and test the hypotheses H, : f =1against H ,: f #1and

H,:a=0against H,:a #0. [Hint: Cf. EX 104]
b) If 'non-significant parameters’ appear in a) formulate an alternative model and perform the test.

EX 148 The concentration of a substance in blood (Y) was measured and compared with a known concentration (X).
The following result was obtained:

X Y

1 11071804

3 3014494445
5 73826.2

10 12.013.112613.2
15 18.719.717.417.1

Test whether the model E(Y|X = x): a + [ - x is adequate. [Hint: Cf. Ex105.]

EX 149 In an experiment one studied the relation between x = Temperature in minus degrees Celsius needed to
reach the freezing point and Y = Concentration of an alcohol at which the freezing point was reached. The result was:

X 0.5 1 4 16

Y 1.21.5 1921 3.94.1 7.88.2

Can the relation be described by a linear regression function?

[WARNING! The alcohol is not ethyl so don't put a bottle of Champagne (12-13%) in your freeze of
about- -16°C ]
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Exercises in Statistical Inference
with detailed solutions

Hypothesis Testing

EX 150 In the preceding example the linear model had to be abandoned. Plot the data and try to find a non-linear
model that fits the data better.

[Hint: Try some of the non-linear models in Ch. 2.3.1 and test whether the linearized version can be accepted.]

[Hint: See EX 107.]

EX 151 The body weight (Y') was recorded for 64 men and women after a diet period. Let x be the

initial weight and let z be a variable taking the value 1 for men and 0 for women. By running the model
E(Y|x,z)= a+ Bix+ B,z + fyx - z one obtained the Sum of Squares for Error SSE = 18.4381. With the model
E(Y|x)= a + fB,x the Sum of Squares increased to SSE = 18.7454.

Formulate and test relevant hypotheses and draw conclusions.

linearized model from the following data:

Year / P Q
-73 421027 778.4 241
-74 437 067 754.5 25.0
-75 453 748 770.7 24.9
-76 472 681 756.3 245
-77 485 582 13211 445
-78 491919 2193.8 76.6
-79 507 296 2494.6 89.7
-80 497 081 2640.8 91.8
-81 489929 2669.9 90.4
-82 506 769 2840.3 99.5
-83 507 822 3070.2 101.1
-84 515257 3286.3 104.9
-85 527 904 3645.2 105.8
-86 554 850 4196.2 120.1
-87 584 427 4746.3 131.5
-88 563 293 5018.0 147.9

[Hint: Use a computer!]

EX 152 A frequently used relation in econometrics is the production function Q(1, P) = « - I P”>, where Q =

consumed quantity, / = income level of prospective consumers and P = price of the commodity. The parameters
ﬂl and 132 are interpreted as Income elasticity and Price elasticity, respectively. Estimate the parameters in the

(I =Total domestic private consumption (million SEK), Q = Yearly consumed quantity of strong beer (million liter), P =
Total price of strong beer (million SEK). All prices in 1988 monetary value.)
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with detailed solutions Hypothesis Testing

EX 153 Time to recovery after a certain disease vary according to the Weibull distribution with survival function
N .
S(y)=e™ .(Cf.Ch.2.2.2) Test H,:a =1against H  : o # 1 based on the following data of the proportion

patients that are recovered at y years which is used as an estimator of S()), S(y) .

y 0.47 0.64 0.89 1.08 141

S()

5/6 4/6 3/6 2/6 1/6

[Hint: Linearize the survival function and use the techniques for analyzing linear models in Ch. 6.6.1.]
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Answers to Supplementary
Exercises

Solutions to Supplementary Exercises Ch. 3

EX28 Fy (1) _% <y<bhb= FY“) (»=1- [l —%} . From derivation rule (5) in Ch.2.3.3,

3 ' 3 _l ~ _Z n-1 zﬁ _l n-1
Sy ) =F, (y)—( b]{o n{l b} J b[l b} |

EX29 Fy (y) =1- e, y20=> Fym (y)= [1 —e M ]" . From derivation rule (5) in Ch. 2.3.3,

fon0)=Fy ) = (Al —e ] =nge o fl—e |

EX 30 Bxact mear: £(j(1- j)/n)=—E(p - 52 )= (E(p) - EG) = (B - [ () + £ (5)) -

l[p—p“‘p)—ﬁ};p(l—p)(l—;] @D pa-p)

n n
Approximate mean:
First we notice that g(p) = p— p* = g'(p) =1-2p,g"(p) = 2. (13)with 4 = p, o> _p( —r) gives:
n

n n I (. . 1 1 1-

E(p(l—p)/n)=—E(p—pz)z—[p—pz+—(—2)”( "))
n n 2 n

n—1
"2 p-p).

It follows that V(p) p( D),

is unbiased for J'( p) = p(l P)
(n=1) p

EX31 p,,i =12have y, = p, and O'Z-Z =p;(1=p;)/n;and 0, =0 (due to independence). Thus we get from

2 2
EX 27: V([é)z[pl] {101(1—1!2)1)/n1 +p2(1—122)/n2 +O}= (p]J [l—pI . 1—p2:|.
b, D p> P> ny py n, Py

The expression for the estimated variance is finally obtained by replacing p, by Y, /n,.
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EX 32 From (9b) we know that £ = E(S?) = o> and (don't use & in the following to avoid confusion)

2 -3) )1 0] 20° : :
V(S°)= [,U4 —%yz j;: [Ile. ~N(u,o )]: (ni . The latter relation follows since
2 O 2, 2 o 2001y — o' _
S (n—l)Z (n=-D=V(S )_(n—l)z Viy“(n-1) _(n—1)2 2(n-1).

i 1
Since § =+/8% = (S?)2 we consider the function g(y) =y with g'(y) = #and g"'(y)=
Thus, y

4y3/2 '

1 1 -1 vV S2
1 ’ V(S?)
(i) o=
1 20° o
S o I 1 T
20° o’

V(S) =

40> (n—1) 2(n-1)
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with detailed solutions Answers to Supplementary Exercises

Ch.4
EX 45
y y" ny"”!
3 F()=5.0sy<band By (0= (FO)' = F, 0)=0= fy, ==

jy y—

n+1 y=b n bn+1 n
= . = b=
n+1 =0 b" (n+1) (n+1)

- 1

b= MY(,” is unbiased for b.

V(l;) (n+1) ( ). Now, E(Y2 )ijz : ny”_l dy = 1 b2, 50
(n)/+ ' (n) b (I’l+2) >

V(l;):(n+21)2{ n -b2—(Lb]2]=(n+l)2'b{ 1 n 2}: b?
n (n+2) (n+1) n (n+2) (n+1) n(n+2)

n 2 n
b) OLS estimator: SS = Z[Yl —é:l dSS Z ——)Z[Y ——} 0= ZY =
=1

i=1 2

l;OLS = 2ZK /n=2Y .Thisis easily seen to be unbiased for b. The variance is
i=l
2n 2 2
~ 2 4 b b
V(b =|— Vy,)=|Ct.222 |=—-n—=—.
(bos) (n);m[ == =5

Moment estimator: Y =b/2 = buom =2Y =bys.

V) b [ n(n+ 2) 3 <1 with equality if n = 1. In the latter case
V(bOLS) b*/3n  n+2

a) Relative efficiency (RE) =

b and by, ¢ are identical.

b) b= Length of each red light period. From the data we obtain y = 46 and y = 20.0, so the estimates are

b= (IO:)_ D -46 =50.6 and EOLS = 5M0m =2-20.0 =40.0. Of these two the first one should be more

reliable since RE in this case is 1/4.
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EX 46

a) OLS estimator: Remember that E(Y;) =n;pand V(Y;) =n,p(1-p).

dSs & 2t

SS = Z :>——Z(n)2 —n,pl= 0:>an Zny_o:spm:’j

N 1 < 1 %
E(pors) = " Z’%E(Yl) = Zni -n; p = p (Unbiased.)

2 =l 2 =l
2 2

i=1 i=1

3
n zni

. 1 Z 1 =
V(Pors) =—— 2.V (¥)=———> n} -n,p(l—p) = p(l— p)—1—
i=1 i=1 i=1
ML estimator:

n n
n *zyi

L= H[n’ jpy" (1-p)"7"=C-p= (1-p)= = = ICisaconstant which doesn't contain p]

EX 46 (Continued)

iyz' (an - ZYi ](_1)
: i=1 i=1

InL= 1nC+zy,1np+[zn —Zyljln(l— ):»C““L 0+,
dp

p (I-p)

n n
and putting this equal to zero yields p,; = Zyi /Zni
i=1 i=1

A 1 < 1 <
E(py) = ,,—ZE(YI) =n—zn,-p = P (Unbiased.)

i=l i=l
2 PRy
i=l i=l

V(pu) =5 DV O = Y mpli=p) = L2

n .

i=1
2 n; E n;
- i=1
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) 2
. n
Viow) S

n
3
n;
i=1

< 1. This follows from Cauchy-Schwartz inequality (Cf. Ch. 2.3.5)

Comparison: RE =

V - - n
(Pors) Z ", -
i=1

1 3
by letting x; = n,.2 and y, = n,.2 . (It may suffice if one demonstrates the inequality numerically by choosing a few
values of 11, .)
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(From now on we skip the upper and lower index in the summation signs.)

b) To show that the ML estimator is BLUE, put T, = ZaiYi = ET)= ZaiE(Yi) =

Zai -nip:pZaini =(Put)=p:>Zaini -1=0(
Q=V(Tn)+/1[2aini—1]=Zai2V(Yi)+/I[Zaini—1]=Zai2-nip(l—p)+/1[2aini—l]:>

do A
—=2a,n,p(1- p)+ in; =0 = a, = ————— = 1', say. (2) Putting this into (1) gives A'=1/ » n,
o, p(1-p) 270=3) y 9 9 >

which inserted into (2) gives a; = I/Zni .Thus, Pprue = ZY, /Zni =D -

To show that the ML estimator is a MVE we determine the C-R limit. From a) above,

d*InL

0’ = [Cf. derivation rules in Ch.2.3.3] = Zyl(o 1J (Z z ( J:
Zzyz (Z Z [Replacingyibin]:—E(dzlnl’j:Znip+(zni_znip):

p (1- dp’ P’ 1-p)’

2m, 2m an

p (1 p) p(1-p)

so the ML estimator is a MVE.

. 1
=1(p).Thus, V(p,,) = 7

o) Let p, =Total number of students in room i, ¥; = Number with back/neck pain in room i

From the data we get Zni =90, anz = 2750, Zyi =6, Zniyi =175 . This leads to the following
estimates: P,s =175/2750 = 0.064 (6.4%), p,, =6/90=0.067 (6.7%) .

EX 47

L =H(1—p)yf*1p:(1—p)zy"”p" =InL=(Yy,-m(-p)+nlnp=

dlIlL _(z

~ n
+——0:> ===

p) p Pu=S,

Define the variable Y, =Number of trials until the first ‘1’ appears. Thenn=3and y, =4,y, =1, y; =3.

1
y

A 3
Thus pML = g = 0.375.

EX 48
i) n o 2 i)
A= H(27r0'2 )_%e 200 = (27[0-2 )_Ee 200
InL =-21n(270?)- 2.0 _fx")z _dinl_ 2 Cx)2y - pr) Y,
2 20 dp 202 Zx;
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EX 48 (continued)
ﬂML is simply the BLUE estimator that was found in EX 30, without any distributional assumptions.
In Ch. 2.2.2 (4) it was stated in the comments to the normal distribution that a linear form of normally distributed

variables is itself normally distributed. Applying this to ﬂML = leYl ,with/, = z , shows that BML is
X;

exactly normally distributed with E(,BML) = Z el = fand V(,BML) =

X
22
e o 2
( xi) zxi

b) From the expression for In L in a) we get

2
dinL L —n i = Bx) 1
—= [The derivative is with repect to o2, not 0'!] = - z ! A —|= 0=
do 20 2 o
. ¥, = Brux)’
O'2ML = Z ! ML . [Notice that the ML estimator has been inserted for IB .] We now determine the

n
distribution of this by using Cochran’s theorem (7) in Ch. 3.1.

S (%= ) =S - B+ Buax, - B0 = 0= Bux)* + Y B, - Be)?

since the cross product vanishes. In fact

23, = Bux B, — B) = 2Bo - DD (Y, = B )x, = 2B~ BS %Y, - By 37 )=
2B - B 0¥ =Y 58 ) =00, 3 - 6, ) = S0 - B |+ B - Y2

Divide each term in the latter expression by o and write the identityas O, =Q, + 0;-

We now find the distributions of O, and ;.

= ()= 0 =

2
~N(ﬂxi,o'2):Lﬂx")~N(0,1) (Y - px)
c o

(¥, - pr))’
Z:O_#NIZM)

2

g — (ﬁML ~N@O,) = 0, = (ﬂML 12(1)

e v B

. 2
)
From Cochran's theorem it follows that O, = z i =P ~7’(n-1H=

2 J—
o (n-1) ol

el een)=2

5 Z(Yvi_ﬁMin)z o’ o’
= ~ 1 Wi =
S D D 22 (n=1) with E(S?) = e

So, &ZML is not unbiased, but the corrected estimator §2 is unbiased.
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EX 49

Beofu. T, =Y a¥ has E(T,) =Y a,E(Y,) =Y a,u=p) a;=Put) = u=
Zai—I:O )

V(T,) :Zal?V(Z) :zaizo-Z/ni :gzzcziz/ni. Thus, QO = V(Tn)+l[zai —1]:

o Za / n; +l[ a—l] =20’a,/n,+A=0=>a, = jngle'ni
a o

(2) inserted into (1) gives z/l'ni = A'Zni =1=>A'= I/Zn[ , which inserted into (2) gives

a; =ni/zn,~ .50, Mprue :Zniz/zni .

V(IUBLUE

S 2, S

2
BLUE of &% . Notice first that S ~ ("—1) 7(n, ~1) (C£.EX16) = E(S?)=
n;, —

2 0_4
D=0 2 and V(572 )= ey

o

B2 (n, -1)= CRURIE

o 204
(n, — 1) 2 =0 = (n, 1)

Put 7, =ZaiSi2 = E(T,) =ZaiE(Si2)=JZZai =(Put) =0’ = Zai -1=0

V(T,) ZZaizV(Siz)=20'4Zai2 (n, —1).Thus,

40"a
=V({T )+ A a.—1=20' +ﬂ, a—1:> +1=0=>
0=V (1)+[Fa,-1] a1 e
a,:—M ﬂ,‘( —1) (4), which inserted into (3) yields
i 4o 4
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, , 1 (n -1)
Z/l (n; —1) =1= A' = and this inserted into (4) gives a; .So,
2= DY)

s 2 -DS;
BLUE Z(l’ll _ 1)

4
2

3 - yvs?) 2 _1) 20

V(O'BLUE ) (Z (n - 1)) - (Z (n, - 1)) z (n, 1)

EX 50 In this example the cell probabilities are specified as hypothetical proportions. In Ch.6, where tests of
hypothesis are considered, there will be more examples of this.

L=C-p"(2p)?(1-3p)* =>InL=InC+y Inp+y,(In2)+In(p))+ y; In(l-3p) =
dinL -3 . +
L g4 2y 22y OV o ()1 -3p) = 3pp = By ==
dp p p (1-3p) 3n+yy+y3)
Y +7,

A

+
yl3—yz .The corresponding ML estimatoris p,;; =
n

E(pML)— ! (E(Y)+E(Y ))=|[Cf.Ch.2.2.1 (6)]— (np+n 2p)= p (Unbiased.).

V@ML)=#)z(mmV(Y2)+2Cov(Y1,Y2))=#(mp(l—p)w-zpa—zm—zn-p-zp)=

(3n

n 1-3
TP (1 p+2(1-2p)-4p) = 2L3P)
On n

We now find the C-R limit.

2 2
dnl_ 3y, (M} (yl tyy, 5% QJ:,_E[d h;L]:
dp p- P (1-3p)° p (I-3p) dp
Y, +Y 9Y, np+n-2 9n(1-3 3n n 3n
E( 15 ] pEn2p (1=3p) _3n _I(p)
p (1 3p)’ p 1-3p)* p (-p) p(l 3p)

since V' (P, ) =1/1(p) we conclude that the ML estimator is MVE.

Download free eBooks at bookboon.com

166


http://bookboon.com/

Ch.5

EX 63 Data consist of naturally paired observations that are strongly dependent. Therefore the approach in EX 53
can't be used. Instead we consider the weight-loss D = X — Y for each subject which gives the series

subject 1 2 3 4 5 6 7 8 9 10

D 0.2 1.1 -0.1 03 -04 0.8 0.2 0.7 0.3 0.7

a)

Here we get 7 = 10, /1, = 0.40, 62 = 0.2022 (&, = 0.4497)

The 95% Cl for Upis 0.40+C 0'4\/4_97 , where C is obtained from P(T(9) > C)Z 0.025 = C=2,262.
10

Thus, the 95% Cl is (0.08, 0.72), so the conclusion is that the training program has a significant positive effect
on weight-loss.

2022 - 2022 -
The 95% ClI for O is (Cf. EX 43)[O Ob 9,0 0 9), where a and b are determined from

a

P(72(9) > b)=0.025= b =19.0226
P(72(9) > a)= 0975 = a =2.7004

This gives the Cl (0.096, 0.674) and since the latter is far below 0.7 (the value for females) we conclude that the
variation in weight-loss is significantly smaller among males.

P(a< 7*(9)<b)=0.95. {

A weight-loss was observed for Y = 8 subjects of n = 10, giving p = 0.80 . From the large-sample expression

in EX 55 a) we get 0.8041.96+/0.80-0.20/10 , or (-0.05, 1.05), which is unreasonable.

In order to use the conservative expression in (23) we need the percentiles F¢,5(6,20) =3.13 and
F 475 (18,4) . The latter is hard to obtain from tables in textbooks, but one solution may be to use linear
interpolation between F . (20,4) = 8.56 and F 4,5 (15,4) = 8.66, yielding F'y,5(18,4) ~ 8.60 . The
latter is close to the true value 8.59 obtained by using the function finv in SAS (Cf. EX 56).

8 @&+1)-8.59
8+(10-8+1)-3.13"10-8+(8+1)-8.59

The 95% Cl is ( ] =(0.107,0.976)

From Ch.5.4.1 n= p(1— f))(C/B)2 , where C = 1.645 since we want a Cl of 90%. Thus,
n=0.8-0.2(1.645/0.025)" =693

The reason for choosing a 90% Cl in this case is that we need to have Bound of Error small and this in turn is
due to the fact that p is quite close to 1.

The balance between the choice of confidence level and Bound of Error can sometimes be a delicate problem.
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EX 64 Introduce the notations £ and M for the population means in the two groups and O'; and O'é for the
2 2
population variances. We first make a 95% Cl for the ratio O ¢ /Gp .

In accordance with EX 53 a) we get

SZ/S} . S/S?
u<O-—§<u,where Ple, < F(ne —1,n, —1)<c,)=0.95.
C, Or C

P(F(29,21) > ¢,)=0.025 = ¢, = 2.317
P(F(29,21) > ¢,)=0.975 = ¢, = 0.455

Since this interval well covers 1we can assume that the two population variances are equal.
The BLUE of the common variance is
Ny (no— I)Sé +(np — I)SIZV ~29-0.2305+21-0.3623

6° = =0.2859
ne —l+n; -1 50

SZ/S8} =0.6362and { gives the Cl (0.27, 1.40).

From EX 53 b) the 95% Cl for fc — Uy is YC —?F iC\/é'z(l/nC +1/n.) , where Cis determined from

P(-C <T(50) < C)=0.95= P(T(50) > C)=0.025 = C = 2.009 . This gives the Cl (0.24, 0.85).

Since the Cl is far above 0 the conclusion is that the mean AOD in the C group is significantly larger than in the
FAS group.
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2
EX65 Y ~ Exponential has E(Y)=1/AandV(Y)=1/1* = E(Y)=1/AandV(Y) = /A .
n

According to the CLT Y_—l/z/l = \/;(/17 - I)L)Z ~N(0,D).
1/

n

From this we get (.95 = P(—1,96 < \/;(2,7 -1 < 1,96) and centering A finally gives the Cl
(%(1 —1.96/\/;),%(1 +1.96/\/Z)j.

In order to calculate the expected length of the Cl we need to know that ZK ~ Gamma(A,n)so (Cf. Ch.
i=l

222(2) E I/ZYi = 1_1 T(n=1) =1 [ -1 = 4 .The expected length of the Cl above is
Py A T'(n) (n-DI'(n-1) @©-1)
A n-2:196 - . .
thus —_—= [n = 50] =0.5664 . This is to be compared with the Cl in EX 61 a) when n = 50,
(=1 n
A (129.56-74.22) 0.5651
(n-1) 2 ' '

EX 66 From EX46 D, = 2 Y,/ Y n has E(p,, )= pandV(p,, )= p(1—p)/ Y n, . Here ) Y, hasa
ﬁML 4

N Y

the 95% Cllimits ,, +1.96, p (1= oy )/ 21, .

From the table we get p,, =30/100 = 0.30, so the Clis (0.21, 0.39).

Binomial distribution, so according to the CLT P 57 ~ N(0,1). (Cf. EX 23 ).) This gives

EX67 A = 103+1 12: oL+117 =105.76 . (Thisis the OLS-, Moment-, BLUE- and ML estimate.)

E(A)=Aand V(1) =A/n,withV(1)=A/n-

Now, following the same lines as in EX 23 c) it can be shown that

14 (j__’u —L2 57 ~ N(0,))
A-b) _ NAn_ =7 ~N(0,]) = A£1.96VA/n givesa95%Clfor A in large
N i » |

VA/n

samples. The Cl is in this case (96, 116).
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Ch.6

EX 109

a) A 2x 2 table may look as follows:

Shape
Round Wrinkly Total
Yellow 315 101 416
Color Green 108 32 140
Total 423 133 556
b) We obtain the following table:
Characteristic Obs. Freq. Exp. Freq. Deviation | Cell Chi.square
Yellow, Round 315 312.75 2.25 0.016
Green, Round 108 104.25 3.75 0.135
Yellow, Wrinkly 102 104.25 -3.25 0.101
Green, Wrinkly 32 34.75 -2.75 0.218
Total 556 556.00 0 0.470

p-value= P(;(z D> 0.47): 0.49 . No reason to reject Mendel’s theory. (It's interesting that the famous statistician
R. A. Fisher concluded that Mendel’s results were far too perfect, indicating that adjustments had been made to the
data to make observations fit the hypothesis.)

EX110

a) In the Poisson distribution E£(Y) =4 =V (Y. The corresponding sample estimates are

¥ =54.6and s> = 251.8 . The variance is more than four times larger than the mean, which
seems strange.

b) H,:Y ~ Poisson(1)

(Y,-Y)’ _(81-54.6) - (31-54.6)°
Y 54.6 54.6

pvalue = P((72(10-1) > 41.5)< 0.005 = Reject H,.

=415

The test statistic is X > = Z
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EX 111 Let Y ='Number on sick leave per day’ /, : Y ~ Poisson(A)

y . . . .
The pfis P(Y:y):/l—e‘l, l:)_}=12 0+10-1+...40-5 30 _
! 12+10+...+0 30

1.0
Expected frequencies:

0 1
30P(Y = 0):30%&0 =11.04, 30P(Y=1)=30%e1'0 =11.04,

>
3013(Y:2):30(1'%e’1‘0 =5.52, 3013(Y23):30{1—13(Ys2)}:30—1 1.04-11.04-5.52=2.40
The latter is computed to avoid small expected frequencies (cf. comment to EX 71).
_ 2 _ 2 _ 2 _ 2
Yo (12-11.04) N (10-11.04) + (6—-5.52) N (2-2.40)
11.04 11.04 5.52 2.40

=0.29

p-value = P(}(z 4-1-H> 0.29)>> 0.10 . There is no reason to reject the Poisson model.

........................................................... sssssssssssssfAlCcatel-Lucent @

www.alcatel-lucent.com/careers

¥, N

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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EX112 H,:Y ~ N(u,0°)
From the n = 48 observations we obtain the estimates /7 =55.125and 6 =18.96 .

Approximate cell probabilities in the four cells are (Z denote a N(0,1) — variable):

P(Y <40)=P 7 A0755123) 5105
18.96
P(40<Y <60)=P 78075125y 407951251 3449
18.96 18.96

P(60<Y <80)=F 78029125 5 607351251 5455
18.96 18.96

80-55.125

I3(Y>8O):1—}3(Y<80):1—13(Z<
18.96

]: 0.0948

Multiplying these probabilities by n = 48 gives the expected cell frequencies.
_ 2 _ 2 _ 2 _ 2
2 (121027 (8-187) (14-14.6) (5-4.5)

=0.17
10.2 18.7 14.6 4.5
p-value= =P(;52 4-2-1> 0.17): 0.68 , No reason to reject /.
EX113 H,: py = p, = py = ps(=D)
We get the following proportions of born boys
Season Spring Summer Autumn Winter Over all (]3 )
Proportion 0.51780 0.51707 0.51414 0.51475 0.516055

4
> n.(p; — p)* =0.054351+0.015844 + 0.052297 +0.025490 = 0.147982
i=1
~ 0.147982
0.516055(1— 0.516055)

reject Ho , even though the sample is very large.

=0.59 = p-value= P(}(z(4 -> 0.59) >>0.10. There is no reason to

EX 114 For Group1 and Group2 X * =0, whereas for Group (1+2) (1+2) X2 =5.01 = p - value < 0.05 . In the
latter case the combination of data from tables with unequal proportions and marginal frequencies has created an
impression of association which in fact does not exist.

This example illustrates that it is possible to ‘create non-significance’ by searching for sub-groups where no
association is found. On the other hand, you may find significant associations in sub groups while no significant

association is found in the total group.

The problem can be settled by a clear definition of the population to be studied.

Download free eBooks at bookboon.com



http://bookboon.com/

Exercises in Statistical Inference

with detailed solutions Answers to Supplementary Exercises

EX 115

a) The proportion positive among husbands is roughly twice as large as among wives, 0.30 and 0.16, respectively.
But is the difference significant?

_(24-10)°

Using the Chi-square principle in the form of McNemar's test gives X2 = =576>
24+10

p-value < 0.05 (p-value = 0.016). There is a significant difference.

To apply the LR test (cf. EX 78) we need the estimates p = % =0.17, p,, =0.24, p;, =0.10
—2InA =-2{(24+10)In(0.17) — 241n(0.24) —10In(0.10)} = 5.9340 = p-value < 0.05

(p-value =0.015)

b) The ordinary Chi Square test of independency yields X > = 0.48 = p - value = P(;(Z(l) > O.48)>> 0.10.
The opinions of husbands and wives are independent.

EX 116
H , :No association between Working capacity and Type of training.

The total Chi-square measure is X > = 65.71 = p - value << 0.001 . There is thus a strong association between the

two factors.

The next step is to search for the combination of factors that are ‘most responsible’ for the high Chi-square measure.
This can be done by considering the table of deviations and cell Chi-square measures and then apply the Bonferroni-

Holm principle described in Ch. 6.4.

Table showing Deviation / Cell Chi-square

Low Medium High
Physical -38.4/9.35 35.75/28.88 2.62/0.37
Activation 43.26/5.85 -39.91/17.71 -3.36/0.30
Education -4.90/0.86 4.16/2.20 0.74/0.17

From this we get the table of ranked Cell Chi-square measures

i 1 2 3 4
Cell Chi-square 28.88 17.71 9.35 5.85
p-value <0.001 <0.001 0.0022 0.015
0.05/(3-3—i+1) 0.0056 0.0063 0.0071 0.0083

Here the first three p-values are smaller than the value in the bottom row. The corresponding Cell Chi-square
measures are thus significant after adjustment for multiple significance. There is an over-representation for the
combination ‘Medium working capacity’x ‘Physical training’ and also an under-representation for the combinations
‘Medium working capacity’ x ‘Activation’ and ‘Low working capacity’ x ‘Physical training’
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EX 117 The hypothesis to testis H,: p=0.4.
n zniﬁi zyi 4+...+6
Anestimateof pis p=" "o — ="
S D 104,412

p(1—p) 0.30(1-0.30)

Do, 100

p—0.4 30-04
P = 0 = 0.30-0.40 =-2.182 . From EX 23 ¢) it follows that we can use the
W) 00021

=10.30 (cf. EX 46b) ) and an estimate of the variance of

=0.0021.

the latter is I}(f)) =

As a test statistic we take T =

normal distribution to compute the (two-sided) p-value 2 - P(Z >2. 182) =2-0.015=0.03 . The conclusion is
that University employees are one sick leave to a less extent than the rest of the population.

EX 118 Introduce the notations:

X (2) = Number of accidents during 2 weeks before the renewal, with intensity ﬁ,X .

Y(3)= - 3« after - Ay .
32
Y ) .

Then (Y(3)| X (2) + Y(3) = n=15)~ Binomial(n =15, p = STy

We wanttotest H,: A, =1, < p =% . The observed number of accidents is 5 and therefore a one-sided
) . 15 0 15 15 5 10
p-value is obtained by by P(Y(3) <5)= o [3/9°@19)" +.+| ZK3/5)(2/9)" =0.0338.

The computation of the last expression is simplified by using tables over the Binomial distribution, e.g. Table 1 p839
in Wackerly et al 2007.

For a two-tailed test we also have to compute the probability of extremely large values. Since the expected number

of accidentsis n- p=15-3/5=9, we compute P(Y(3) > 13):

15 13 2 15 14 1 15 15 0 _
[BJG/S) (2/5) +(14J(3/5) (2/5) +[15J(3/5) (2/5)° =0.0271.

The p-value for a two-tailed test is 0.0338+0.0271 > 0.05 and the conclusion is that the effect of renewed equipment
is not significant.

EX119 H : p; =1/4 .The sum of observations is 80, so n/k =80/4 =20 . The test statistic is

_(19-20)° . (16—20)* . (20-20)* . (25-20)*
20 20 20 20

Ho is not rejected, the observations may be generated by the same Poisson variable.

X2 =2.10= p-value= P(y2(4—1)>2.10)> 0.10
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EX 120 The likelihood is 7 — ¢ 2% = 7 - " _ L (cf.EX41)
5 zyi y
n =4 Vi
TheLRis A = L_j) = Ae = =(Ay)" e T = (A y) "D H , is rejected for small values of A. Which values
L A/y) e

of A,y will make A small? To answer this consider the function g(x) = x"e"™ =

In(g(x))=nln(x) + n(1 - x) which has max/min for the same values as g(x) (cf. Ch. 2.3.3).

dIn(g(x)) S —— d* In(g(x)) - " 9= Localmaxfor x=7A,y =1.Thus H rejected for extremely
dx X dxz x2

large or small values of /10)7 , or equivalently for large values of /10 Zyi , but how large or small?

To this end we use property (5) in Ch. 2.2.2.
Y. ~ Exponential(1) = Z Y, ~ Gamma(n,A) = 24, Z Y, ~ 77 (2n) - By using the latter relation probabilities can

i=1 i=l
easily be computed from the Chi-square distribution. The RR is thus of the form 2/102 Y, <C, or24, ZYi >C, .

where C, and C, are constants that are determined in the following way:
The test is two-sided at the 5% level and n = 10 which yields

P(7?(2:10)< €, )=0.025= €, =9.5908 and P((2-10)> C, =0.025)=> C, =34.1696.

; 9.5908 34.1696
The RRis Y < or Y >—"— .
R TR N a7y
Notice that the sample has not yet been collected and nor has the value of 2,0 been specified. Once this has been
the case the test can be performed.
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EX 121 The Likelihood without restrictions on the parameters is

ny ny
L =Hlxef’1’(xf -Hﬂ,ye%m = A"XX ,1’;/ e%"zx"e%yzy‘ and the Likelihood under H  is
i=1 i=1
L() :A(”X+”Y)e_l(zx1+zyi).
dinL n . n
S 0 Ay =
dAy Ay le.

ImL=nyIndy +nylndy — 2, > x, =2 > v, =
ny

2V

ity =Gny 2= 2+ T Jor S I (S B ) -

Similarly, ﬂty =

I’: i(”x +ny) e—(nXJrny) i(nX +ny)
A = 0 = . - =

r 7 ny 5 ony —hy Ny 7 ny 5 ony
L A A eme™ 1A,

“2lnA= _2{(’7)( n ny)ln/i —nyIn jx —ny In j:Y } which is distributed y* (2 — 1) under H,.

P =30 5004, =90,

The estimates are /1X = =2.00, ,1Y - = 7 M
20 40

1.50, 4 = =1.67T=
20+ 40

—2InA=-2(-09712) =1.9425=5 p - value = P (1) > 1.9425)=0.16 > 0.05.
There is no reason to reject H0
The link between the Poisson process and exponentially distributed intervals was stated in property (4)

Ch. 2.2.2.In EX 86 it was shown how to test the equality between two Poisson rates based on count data (frequency
of occurrences). In the present example we have shown how to perform the same test based on interval data.
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EX 122

a) The unrestricted Likelihood is L = H(l -p)Y T p=(1- p)zyi_n p =
il
InL yz 1
lan( yi—n)ln(l—p)+nlnp:>dn ( )( 1)+ " =—.
dp -p) Zy, ¥

The Likelihood under H jis L, = (1/ 2)2y"_” a2t =q/ 2)2” . (No parameters need to be estimated.)

L, (1/2)%" /2%

A= = =[After some simplification, but not needed.] =

T
y y

-2InA= —2{2 vy, - In(y/2)— (Zyi - n)ln()_/ - 1)} which is distributed (1 —0) under H,.

b) —2InA= —2{801n(0.8) - (80-50)In(8/5 - 1)}= 5.0534 . p-value = P(}(z @®> 5.0534)= 0.02
<0.05.
H ,is rejected and since p =50/80=0.625 > 0.5 we draw the conclusion that p is significantly larger than 1/2.
c) There are many situations where we can collect data on the variable ¥, ="Number of trials until an (0, 1) -event

occurs for the first time'in order to test the hypothesis that p =1/2. An example is a sequence of ups and downs
on the stock market.

EX 123

a) From the datawe get n=16,y, =2.2375, sé =7.3265 . Thus,

T= 22750 _ 3.307 = p - value=2- P(T(16 — 1) >3.307)=2-0.0024 = 0.004 . The conclusion is

\7.3265/16

that the weight loss program had a significant positive effect.
b) Define T ="Number of positive signs’ Under H : P(+): p(_): 1/2 the variable T is distributed
Binomial(n =16, p=1/2). In the data we observe 7' =13 and a one-sided p-value is

~ 1616 ’ 6oy _ 16 1(16 16 16 16|
P(TZB)—yZB[yj(l/z) 1/2)7 =(1/2) {[13}{14}+(15j+(16j}—0.0106.

However, to compute a two-sided p-value we should also consider the possibility that the outcome may be in the
‘opposite direction’ Since the expected value of Tis 16/2 = 8, the ‘opposite direction’ consists of the outcomes 7' < 3.

3.(16 16) (16) (16) (16
P(Ts3)=2(y}(1/z)y(1/2)‘6y =(1/2)16{0j+( X j+(2j+(3 J}:o.moa (This result is to be expected

y=0
since the Binomial distribution is symmetric for p = 1/2.)

The two-sided p-value is thus 0.02, which is much larger than 0.004 in a), but still less than 0.05.

) T~Binomial(n:16,p:1/2):>P(T213):1—P(T<13)z1—P(Z<WJ:

V16/4
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EX 123 (Continued)

=1-P(Z <2.25)=P(Z >2.25)=0.0122.
3-16/2+0.5

V16/4

The two-sided p-valueis 2-0.0122=0.02.

Similarly P(T'<3)~ P[Z <

} = P(Z < —2.25) =0.0122 because of symmetry.
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EX 124

a) Introduce the notations pg and p,, for the proportion of products:chat are classified ‘Bad’ by State authorities
and Municipal authorities, respectively. The observed differenceis Ps — Py =

(20+20) (20+10)

=0.10, but is the difference significant?

100 100
Hy:ps =Py
2
McNemar’s test (Cf. EX 71) yields: X * = % =3.33=p-value= P(;(2 ®> 3.33): 0.068.
+

We can't reject the null hypothesis at the 5% level.
b) H :Independency between the two types of classifications. (It's close to an insult to set up this hypothesis.)

The ordinary Chi-square test of independency yields:

X ~12.7=p-value = Py (1) > 12.7)<< 0.005

, (20-12)° a0 —18)? L (20- 28)? L (50— 42)?
12 18 28 42
There is strong reason to reject /1, .

A, . . . .
EX 125 The pf.is p(y) = 2o 5 07103+ 1143+ ... 462

! 103+143+...+2

—1.3225. (This is simply A = 7

Now, p(0)=e* =0.2667, p(l) = A-e™* =0.3527, and so on. In this way we get the following table, where Y =

Observed frequency, nﬁ(y) = Expected frequency and n = 400.

y 0 1 2 3 4 5 6 Total
~ 2667 3527 2332 .1028 .0337 .0090 .0019 1
p(y)
~ 106.7 141.1 933 411 13.5 3.6 0.7 400
np(y)
Y 103 143 98 42 8 4 2 400
~ 2 0.127 0.026 0.237 0.020 2.241 0.044 2414 5.109
(Y - np(»)
np(y)

p-value = P(;(2 7-1-1)> 5.109)= 0.40, so there is no reason to reject the Poisson distribution. The degrees of
freedom in the Chi-square distribution is due to the fact that there are 7 cells and 1 parameter has been estimated.
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EX 126 A 2 x 3 frequency table is

Morning Day Night Total

Defective 12 10 23 45
Not defective 188 190 177 555
Total 200 200 200 600

The table with Deviation / Cell Chi-Square (Cf. Ch. 6.2.1) is

Morning Day Night
Defective -3/0.6 -5/1.6667 8/4.2667
Not defective 3/0.0486 5/0.1351 -8 /0.3459

The total sum of Cell Chi—Squqre is

X?=0.6+...+0.3459=7.0631= p - value = P(;(2 (B-D(2-1))>7.063 l): 0.0293. We reject the hypothesis
of no association.

In the last table there is a large excess of observations (+8) in the cell Defective x Night. The p-value for this Cell Chi-
Square is P(;(2 > 4,2667?: 0.0389 < 0.05. However, there are deviations in 6 cells to take account of. Since 0.0389
> 0.05/6 (Cf. Ch, 6.4.) we can't claim that there is a significant over-representation of observations in the cell Defective
x Night after having adjusted p-values for multiple comparisons.

EX 127 There are three differences between proportions to consider. The largest difference is for the proportion
defective in Night and Day, 23/200 —-10/200 = 0.065 . The corresponding test statistic for testing that the true
difference is zero is (Cf. EX 83 a).)

- 0.065 S
\/13(1 — p)(1/200 +1/200) 200 + 200

} =236=p- value=2P(Z >2.36)=0.018 <0.05.

However, since there are three comparisons to make we should require that 0.018 is less than 0.05/3~0.017
(Cf. Ch. 6.4.). The difference between defectives in Night and Day is approximately significant after adjustment for
multiple comparisons. The other two differences are not.

EX 128 Let p, and P - be the proportion left-handed among identical- and fraternal twins, respectively. We want to
test H, : p; = pr(= p) .The test statistic for this is

5o R 41 . 18
T= pr—pr =0 which is distributed N (0,1) in large samples. p; =——, Pp =——,
JpA=p)Ut/n, +1/n,) 248 246
. 41+18

p=———=T=3.153=p-value= 2P(Z > 3,153)z 0.002 . There is thus a strongly significant difference
248 + 246

between the proportions.
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EX 129 We give two types of solutions, one ‘Straight’as in EX 85 a) and one in a ‘Bio-statistical style’

114

Straight solution: The t timated tions to b dare p, =———and p, =——.
raight so lil /or1714e WO estimated propor ICinS OA € compared are pl 20000 p2 473000
. + -

p= T = P~ Py takes the value -1.733

20000 + 473000 N 1
- +
PA=P) 30000 T 273000

=p- value = P(Z > 1,733) =0.042 < 0.05. (In this case it seems reasonable to use a one-sided test.)

Hint: If you have problems to perform calculations with very small numbers in both numerator and denominator in T,

just multiply T by e.g. @ .
1000
Solution in a Bio-statistical style: Let Y ='"Number of polio cases among 20000 vaccinated children.
. . 114
Under the hypothesis that the SALK vaccine has no effect ¥ ~ Binomial(n = 20000, p = m)

and approximately Y ~ Poisson(A = np = 4.8) . The latter variable has expected value 4.8 and therefore the

hypothesis of no effect is rejected for small values of Y.

1 ¥

pvalue= P(Y <1)=>)" 4.8
y=0

In this case the group under study (vaccinated children) has been exposed to a standard value of a parameter

(p = 114/473000) and the outcome of this is evaluated. Such an approach is very common in bio-statistical studies,

especially in epidemiology.

e =(1+4.8)e™*® =0.046 <0.05.

EX 130 Table of Deviation / Cell Chi-Square:

Low Middle High
Cheap -14.3/3.93 20.0/ 5.86 -5.6/ 0.9
Expensive 14.3/4.31 -20/ 6.44 5.6/1.0

The total Chi-square measureis X > =3.93 +...+1.0=22.4 = p - value = 0.00001 << 0.05 . There is thus
strong evidence against independency.

The largest Cell Chi-Square is 6.44 and p-value :P(;(2 1> 6_44): 0.011<0.05. For a multiple comparison in 6 cells
it is required that the latter is less than 0.05/6 = 0.008, which is nearly true. No further significant patterns can be
seen.

The conclusion is that there is a significant under-representation of Middle- class families with Expensive electronic
equipment.
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EX 131 Let Y ="Yearly number of cases in Malmé'~ Binomial(n =110000, p) . We want to test
H, :p=35/100000. Since p is small,Y ~ Poisson(A =110000-35/100000 = 38.5) under .

The expected value of Yis 38.5 and the observed value is 60. It is therefore natural to compute the p-value as

© 9y
P(Y >60)= Zﬂ—e" , but this is a heavy task. Instead we use the fact that for large A, a Poisson variable can be
y=o0 V!
approximated by a N(A, A) -variable (Cf. Ch. 2.2.2.).

60 -38.5
g

v38.5

The conclusion is that inhabitants in Malmo have a significant higher risk for malignant melanoma than the rest of
the Swedish population.

p-value — p(Y > 60)z P(Z ) = P(Z > 3.47) =0.0002
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EX 132

a) Asthe question is formulated, a one-sided test seems to be appropriate. On the other hand, if the problem
was to find out which of the two importers is best, a two-sided test is preferably.

b) The two estimated proportions are p, = 21_9 =0.095and p, = 21% —0.050. Totest H, : p, = p,(= p)
we use the test statistic 77 — P =P =0 whereﬁ:M,
JP=p)A/n, +1/ny) 200 + 200

This gives 7' =1.735=> p - value = P(Z >1.735) = 0.0413 < 0.05. The new importer is better!

¢) ¢)We construct the following 2 x 2 table:

Quality
Bad Acceptable Total
Importer Former 19 181 200
New 10 190 200
Total 29 371 400

X?=1.3966+0.1092 +1.3966 + 0.1092 = 3.0114 = p - value = P(;(Z(l) >3.01 14)= 0.0826 -

Notice that the p-value in c) is twice that of b). The Chi-square test is by its nature a two-sided test.

It has been demonstrated that the test of equality between Binomial proportions in EX 83 a) is equivalent to the Chi-
square test of independence if the test is two-sided. The Chi-square test can also be used as a one-sided test if the
p-value is divided by 2. However, both tests are approximate and require that sample sizes are large.
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EX 133 We first consider one-sided vs. two-sided tests.

Most people would probably agree that vaccination could not have a negative effect on the state of health. The test
should thus be one-sided.

(However, there may be other opinions on this issue. Some might e.g. argue that vaccine can be contaminated.)
The test for equality of two Binomial proportions yields

T= 4/90 718766 =—4.0476 = p - value = P(Z > 4.0476)~ 0.000025 .

221 1
156\ 156 190 " 66

From the 2 x 2 table the following table over Deviation / Cell Chi-Square is constructed:

Diseased Not diseased
Vaccinated -8.7 /5.9529 8.7 /0.98
Not vaccinated 8.7/8.1176 -8.7/1.33

From this, X? =16.38 = p - value = P(;(2 (1) >16.38) =0.000050 . The latter is the result of a two-sided test. To
get a one-sided p-value we simply divide it by 2.

In the last table there are two significant Cell Chi-Square. P(;(z 1>8.1 l76)= 0.0044 < % =.00125 and

P(y? (1) >5.9529)=0.0147 < % —0.0166 (CF.Ch. 6.4).

EX 134
a) X?=6.6197=p-value= P(}(z 0> 6.6197)= 0.0178 (two-sided test). For a one-sided test the
p-value is halved, 0.0139.

_ 9814711291 16!
145!

b) p-value

! + 1 =0.0123 (one-sided test)
1541-83146! 16!0-82!-47!

EX 135

a) We first test whether the population variances of the two bulbs are equal (Cf. EX 88.).

_(®3)°
- (62)?

=1.79=p-value=2- p(F(19,1 9)> 1_79): 0.22 . The variances can be considered equal.

~(20-1)(62)* + (20 - 1)(83)*
B (20—1)+(20-1)

The test statistic for testing that the two population means are equal is

The pooled sample variance is §° =5367.

~ 1128-1236
\/3367(1/20 +1/20)

clearly significant.

=—4.66= p-value=2- P(T(ZO -1+20-1> 4.66): 0.00004 . The difference is

b) Referring to EX 88, we get T = 1128~ 1236 =—4.66=p - value=2- P(Z > 4.66)< 0.00001.

\/(62)2 /20 +(83)* /20
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is the same as that £(D) =0 .Thisis tested by T =

EX 136 Let Y, and Y be the yield from variety A and B, respectively. Form the difference D =Y, — Y, and

compute the estimates d =133 and sﬁ = 6.7882 . The hypothesis that the difference between the means is zero

1.33-0

J6.7882/12

= p-value=2- P(T(12 -D> 1.77) = 0.10. We can't claim that the difference is significant.

1.77

EX 137 The ranked series are:

A 22 |28 |38 |40 |40 | 41 44 | 46 | 48 | 51 58 60
B 12 |15 |18 |21 |23 |24 |29 |35 |36 |43 |54 80
38+ 40

The combined ranked series is easily shown to have the sample median m =
frequency table

=39 . This leads to the 2 x 2

A B Total
>39 9 3 12
<39 3 9 12
Total 12 12 24

The hypothesis of interest is H , :No association between Type of series and Distribution around sample median.

X?=6.0=p-value= P(}(Z > 6.0)2 0.0143 . The two series have significantly different medians.
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EX 138

a)

Remember the conditions for the Binomial distribution in Ch. 2.2.1,” independent repetitions of the same
experiment’ The taster has thus to spit out the beer after each tasting. He also has to reset his memory, so that
he can’t compare the taste of a new glass with the taste of the preceding one. Therefore, a so called wash-out
period is needed between tastings. The arrangement of the glasses is easily done by tossing a coin.

The hypothesis H, : p =1/2 means that we assume that the taster is merely guessing.

a) From EX 4 we get

8
b) From the Binomial distribution we get P(Y = 8): 1L =L =0.004 < 0.05,
8)2% 2% 28
811 1 1
PY>7)=P(Y=T7)+P\Y =8)= ——+—=—(8+1)=0.035<0.05. For y smaller than 7 we get
(127)=rlr =7)+ 2y =8)=( )3 o= ’ ;
probabilities that are larger than 0.05. The smallest acceptable value of y is thus 7.
c) We have to solve x in the relation p(y > x)z Pz >M —0.05= X" 50 =1.645=>
A100(1/2)(1/2) 5
x =59 will be enough.
EX 139

y 0 1 2 3 4
Sample cdf 6/160 44/160 102/160 149/160 160/160
p(y) 0.056 0.235 0.374 0.265 0.070
0.056 0.291 0.665 0.930 1.000
Fy(»y)

Here, F,(¥)=p0) +...+ p(»).

The largest absolute difference between the sample cdfand £, () is D,4, = |102 /160 —0.665/=0.028.

The critical value for a two-sided test at the 5 % level is 1.36/4/160 =0.11 (Cf. Ch. 6.2.4) > 0.028 so there is no

reason to reject the Binomial distribution.
b)
y 0 1 2 3 4
Expected frequency 2.0 37.6 59.8 424 11.2
Observed frequency 6 38 58 47 11
Here, Expected frequency is 160 - p(y) y=0,1,2,3,4.
2 2 2 2 2
-9. -37. -59. 47-424 11-11.2
X2=(6 9.0) +(38 37.6) +(58 59.8) +(7 ) +( ) —156=
9.0 37.6 59.8 42 .4 11.2

p-value = P(;(2 5-1-1)> 1.56)= 0.67 and there is again no reason to reject the Binomial distribution.
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EX 140
a) The ranked series and sample cdf’s are:

Day1 (15 observations):

y 30.8 31.0 314 329 333 334 335

Sis(») 0.067 0.133 0.200 0.267 0.400 0.467 | 0.533

y 337 343 344 34.8 34.9 36.2 37.0

Sis (») 0.600 0.667 0.733 0.800 0.867 0.933 1.000

Here, 0.067 = 1/15,0.133 = 2/15, and so on. Notice that there are two observations at y = 33.3.

Day2 (10 observations):

y 284 28.7 30.2 30.7 31.3 31.9 321 324 32.8

S10(» 0.100 0.200 0400 | 0.500 | 0.600 | 0.700 | 0.800 | 0.900 | 1.000

For 31.4<y<32.9,S5,5(¥)=0.20 and for y 232.8, S5,,(») =1.000 . The largest absolute difference between
the two cdf'sis D5, =[0.20 —1.00|=0.80 .

From tables over the Smirnov two-sample distribution it is seen that the critical values for rejecting the hypothesis of
equal cdf’s are 15/30 (5% level) and 19/30 (1% level). The observed absolute difference of 0.80 is larger than both of
these, so the hypothesis of equal population distributions can be rejected at least at the 1% level.

b) From the data we get Day 1: Mean = 33.66, Variance = 3.05
Day2: Mean =30.87, Variance = 2.28

As in EX 86 we first test whether the population variances of the two series are equal.
3.05

F= 58 =1.34=p-value= P(F(IS -1L,10-1)> 1.34)2 0.34 = Population variances can be assumed to

,  (15-1)-3.05+(10-1)-2.28

A5-1)+(10-1)

=2.75.

be equal. The pooled estimate of the common variance is §

To test whether the population means are equal,
_ 33.66-30.87
V2.75(1/15 +1/10)

means differ significantly.

=4.18=p-value=2-P(T(15-1+10—-1) > 4.18)=0.0004 = Population

According to both tests in a) and b) the population distribution of viscosity has changed from one day to another.
The test in b) gave a somewhat stronger rejection of equal means. On the other hand, the test in a) is free from
assumptions about the population distribution. The latter is to prefer in the absence of evidence for that viscosity is
normally distributed.
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+if yield for A is higher than B
EX 141 Introduce the notations | _if yijeld for B is higher than A . We now get the following pattern:

0if yield for A equals yield for B

Area 1 2 3 4 5 6 7 8 9 10 1 12

Sign + - + - + - + + + - + 0

Let Y ="Number of minus signs’ of n= 11" (The observation with a 0 is deleted.) Under the hypothesis of no difference
inyield,Y ~ Binomial(n=11,p=1/2).

value = (! s (A0 (1) (1ny (1) (1]
p-value P(Y£4)—yZ=(;(yJ(l/2)y(1/2) 7=(1/2) KOJ+(1J+(ZJ+(3J+(4H_

L(l +11+55+165+ 330): 0.27 . A two-sided p-value is obtained by doubling the latter value. In neither case

the difference is not significant.
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EX 142 We want to test the hypothesis of no association between the two series. Let d; be the difference between
the ranks for the i:th student.

de=l+16+4+9+2+9+2+25+16+14+1+9+16+16+9=l46

6
rg=l-—————-146=0.7393.
15-(15° -1)
From Table 11, Appendix 3 in Wackerly et al one gets the critical value 0.525
(two-sided test, ¢ = 0.05 ). Since this is smaller than 0.7393 we reject the hypothesis of no association.

EX 143 Let X, = Value before, Y; = Value after for the i:th sample unitand put D, = X, =Y.
From the data we get =10, D =0.03, 5} =0.001533 (S, =0.0392).

0.03-0
=—==242=p-value=2- P(Z > 2.42)= 0.0156. There has been a significant decrease of
0.0392/+/10

the concentration due to the effect of the drug. B
There are good reasons for assuming normality in this case. Notice that [) involves a sum of 20 variables.

b) RRis \5—0\ >1.96-0.0392/+/n

(p —OWn

0.0392

9 P — P Z>196-1-
owléip) [ 0.0392

j+P[Z<—1.96~1—

(s —0)\/2}_

Forrn =100 this will be larger than 0.90 if|,UD| >0.013,

EX 144 From EX 97-98 we obtain

Jra-p)  p1-p) Jp—p)  p(-p)

By inserting p = 0.15 one gets the requirement Pow(0.15) =0.90, an equation in n that has to be solved by ‘trial
and error’. It is found that for n = 200, Pow(0.15)=0.90031.

Pow(p):P[Z>l.96- 0.08(1-0.08) (p—o.os)&]”(k_l.%. 0.08(1-0.08) (p—o.os)ﬁ]

RRiis |5 —0.08]>1.96 - VOO0 -0.08) [n=200]=0.0376 .

Jn
Now the study can begin and the sample is collected. In practice it would be wise to include somewhat more than
200 persons in the sample due to non-responses or drop-outs.
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EX145 T =(n—1)S* ~c*y*(n—1).TheRRisT <aor T >band a =0.05.

2 %:P(T<a|H0)=P(o-é;(z(n—l)<a):P[Zz(n—1)<%j:>i2=;(§/2, a=04xen
0 0

%zP(T>b|HO):P(a§;(2(n—1)>b)=P(;(2(n—1)>L2J:1—P[;(2(n—1)<iz]:>

Oy Oy
b a b
P[Zz(”_1)<_2]:1_E:>_22112a/2a bzo'glia/z'
O O

Here we have used the notation P(;(z < }(127 )= p.

TheRRisthusT<0'g;(§/2 0rT>(7§)(|2_a/2-

POW(UZ):P(T<UgZ§/2)+P(T>O'§7(127a/2)=P(O'zlz(n_l)<o'éli/2)+

2 2
Pl (n=1> 0012 un)=P 22 (n-1)<Z2 12, +P(){2(n—1)>O-—g)(12_a/2J,whichturnsout
(o2 (o2

to be a function of R = 05 /o?.
b) Withn=10and a/2=0.025, y;0s =2.70039 and ;475 =19.0229 . The RRis

T <oy -2.700390r T > o -19.0229.

Pow(R) = P(}(z Q) <R- 2.70039)+ P(}(z 9 >R- 19.0229). This is a non-symmetric function. Some values

are:

Pow(R) 092 039 0.05 0.09 0.20 0.94

9.5908 or ZY' S 34.1696

EX 146 With n=10the RRis " ¥, < 7 >
0 0

Pow(A) = P(Z Y. < 9'5208J +P z Y. > 34';696) = [Multiply each factor within braces with 24 and use the
L2 I 24

resultthat 243", ~ > (2n)]=P ;(2(2n)<%~9.5908J+ P[;ﬁ(zn) >%-34.1696j.

i=l1 0 0

A
Put R =— and plot the power as a function of R.It is seen that the power is larger than 0.90 for
0

R<0.35andR >3.0.
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EX 147 From the data we get 7 = 6,Zx= 21,Zx2 =91,Zy = 21,2)/2 =89.2,ny=90,

S =91-(21)2/6=175,8,, =89.2—(21)>/6=15.7, 8, =90 — (21)(21)/ 6 =16.5.

a B _165 _ 0.9429, & 2 [:,Q =0.2, SSE=89.2— 3% -91=8.3029, 6> = SSE 5 0757
17.5 6 6 n-—
H,:p=1
= 0.9429 -1 =-0.33, p- value=2- P(T(6 — 2) >0.33)=0.66 . Don't reject H,.
\2.0757 /(6 -2)17.5
Hy:a=0
0.2-0
T= =0.237, p-Value=2-P(T(6—2)>0.237)=0.82.
2
20757 Ly L6
6 (6-2)17.5
Don't reject H .
b) Since H :a = 0 can't be rejected we apply the model E(Y|x)= pB-x.
ot 90 2 A2 SSE .
From EX 54, [ = a =0.9890, SSE=89.2-(90/91)° -91=0.1890, ¢~ = ( =0.0378 (The SSE in
n—
the latter expression is different from the one in a).)
H,:p=1
0.9890 -1
T=—m—= —0.54, p- value=2-P T(6 - 1) >0.54)=0.62 . pon't reject H .
\/0.0378/91 ( ) ’

The conclusion is that the model in b) is to prefer.
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EX 148 First we construct the following table:

X x2 n hx an )_} nJ_; nx)_}

1 1 4 4 4 1.00 4.0 4.0

3 9 5 15 45 3.64 18.2 54.6
5 25 3 15 75 7.23 21.7 108.5
10 100 4 40 400 12.725 50.9 509.0
15 225 4 60 900 18.225 729 1093.5

Total 20 134 1424 167.7 1769.6

1769.6 — (167.7)(134)/20 1677 4134

3= =1.2277, G =——"— f—2=0.1544

p 1424 — (134)* “" "0 / 20
X n y n()_)—d—ﬁ’~x)2 Zyijz'_(zyij)z/ni
1 4 1.00 0.584 51_(40)2/4:11
3 5 3.64 0.195 74.58 —(18.2)* /5=8.332
5 3 7.23 2653 158.97 — (21.7)* /3=2.0067
10 4 | 12725 0.345 648.61—(50.9)* /4=0.9075
15 4 | 1823 0476 1332.95-(72.9)* / 4=4.3475

Total 4.253 15.6612

Hy E(V|X =x)=a+p-x

_ 4253/(5-2)
15.6612/(20 - 5)

=1.358 = p - value= P(F(3,1 5)> 1.358) =0.29 . No reason to reject the hypothesis.

EX 149
X y n nx an )7 ny nx)_;
0.5 1315 2 1 0.5 1.4 2.8 1.4
1 1.9 2.1 2 2 2 20 4.0 4.0
4 3.941 2 8 32 4.0 8.0 320
16 7.88.2 2 32 512 8.0 16.0 256.0
Total 30.8 8 43 546.5 30.8 293.4
-~ 293.4-(30.8)(43)/8 A . ~4
£ = ( )(2 )8 04054, =98 _ 3B 67
546.5— (43)* /8 8
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EX 149 (Continued)

x n y Vol nG-a-g-x7 | Dy-¥)’
05 2 1315 14 0.4469 0.01+0.01 = 0.02
1 2 1.92.1 2.0 00114 0.01+0.01 = 0.02
4 2 394.1 4.0 1.0037 0.01+0.01 = 0.02
16 2 7.88.2 8.0 0.0488 0.04+0.04 = 0.08
Total 1.5108 0.14

1.5108/(4-2)

=21.6=p-value= P(F(2,4) > 21.6) =0.007 . The linear model has to be rejected.
0.14/(8—4)
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EX 150 The model y = a - x” may be a candidate. Here, In(y) = In(a) + bIn(x) or y'=a'+h - x'.

We now test whether E(Y'|x')= a'+b - x' is a proper model.

—n I R} —

X y n nx n(xy ) 2 y nx'y ny
-.069315 0.2624 2 -1.3863 0.9609 0.3339 -0.4629 0.6678
0.4046
0 0.6419 2 0 0 0.6919 0 1.3838
0.7419

1.38629 1.3610 2 2.7726 3.8436 1.3860 3.8428 2.7720
14110

2.77259 2.0541 2 5.5452 15.3745 2.0791 11.5291 4.1583
2.1041

3.4657 8.9818 8 6.9315 20.1790 4.4909 14.9090 8.9818

7 14.9090 - (8.9818)(6.9315) /8

' b
20.1790 — (6.9315)* /8

=0.5028, a' =0.687

_ 89818 ~6.9315
8

From this we get a new table:

n Yy Ay, D —
n(y'—a'-b'x'")? Z(J",;- -7’

2 .000044 0.0102

2 .000046 0.0050

2 .000007 0.0013

2 .000008 0.0013

Total 0.000105 0.0078

~0.000105/(4-2)
0.0078 /(8 —4)

new model.

0.027 = p - value= P(F(2,4) > 0.027): 0.97 . There is definitely no reason to reject the

EX 151 The hypothesis to testis H, : 5, =0, 5, =0against H, : 8, #0, 5, # 0, i.e. there is no effect of the
sex on body weight beyond the initial weight.

_ (18.7454-18.4381) (3 - 1)

=0.50=p- value= P(F(2,60) > 0.50): 0.61. No reason to reject H
18.4381/(64-3-1)
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EX 152 The model is linearized by the transformation In(Q) = In(e) + B, In(1) + B, In(P) =
a+pI'+p,P'.
From the print out we obtain:

R?=0.990 (a good agreement).

Parameter Estimate T-value P(T > |T —va Zue|)
a' 9.0795 143 0.1765
B -0.9994 -1.92 0.0766
B, 1.0779 16.23 < 0.0001

Here the T-value and the corresponding p-value are computed under the hypothesis that the parameter is zero.
Since & = e”%"% =8773 the estimated model is 0=8773- 17 P9 Assignificance-fundamentalist’ (a person
who argues that all non-significant parameters should be deleted in a model) would object against including / in

the model.
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Comment to the solution of EX 152. To solve non-linear problems bylinearization and usingleast-squares
techniques, as in the present example, is very frequent (perhaps too frequent) among econometricians.
One should be aware of that if ,é is unbiased for f, it does not follow that P#is unbiased for p# . Let’s

look at this a bit closer.

Putg(,é) = Pﬁ,where E(,B) = . According to (14) in Ch. 3.3.2, E(g(,@))z g(p)+ %g"(ﬂ) : V(,é).

Now we have to find g''(). For simplicity, put g =P’ = In(g) = y In(P) = % - In(P) =
y g

g'=In(P)-g=g"=In(P)-g'= (ln(P))2 -g= (ln(P))2 P” . From this we finally obtain

. R 2 P
E(Pﬂ )z Pl 4 %(ln(P))zP"” V(B = Pﬂ[l + (ln(P))zV(m] > P, so there will be a positive bias. However,

const.

since V() = , the bias can be ignored in large samples.

EX153 S(y)=¢ ?" = In(S(y))=-* = y'=In(- In(S(»)))=In(1) + a In(y) = 1'+a - x , say.

We thus run a regression of '= ln(— ln(ﬁ(y)))on x =In(y) . This yields:

Parameter Estimate Standard Error of Estimate
A -0.0914 0.0378
o 2.0470 0.0888
Here, Standard Error of Estimate = |V ( Estimator)
2.0470 -1

H,:a=1against H  :a #listested by T = =11.79 = p-value=2- P(T(5-2) >11.79)= 0.001.

Reject H !

0.0888
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