> SPSS Programming
and Data Management, 4th Edition

A Guide for SPSS and SAS® Users

Raynald Levesque and SPSS Inc.

For more information about SPSS® software products, please visit our Web site at http.//www.spss.com or contact:

SPSS Inc.

233 South Wacker Drive, 11th Floor
Chicago, IL 60606-6412

Tel: (312) 651-3000

Fax: (312) 651-3668

SPSS is a registered trademark and the other product names are the trademarks of SPSS Inc. for its proprietary computer
software. No material describing such software may be produced or distributed without the written permission of the owners of
the trademark and license rights in the software and the copyrights in the published materials.

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of The Rights in Technical Data and Computer Software
clause at 52.227-7013. Contractor/manufacturer is SPSS Inc., 233 South Wacker Drive, 11th Floor, Chicago, IL 60606-6412.
Patent No. 7,023,453

General notice: Other product names mentioned herein are used for identification purposes only and may be trademarks of

their respective companies.

SAS is a registered trademark of SAS Institute Inc.

Python is a registered trademark of the Python Software Foundation.

Microsoft, Visual Basic, Visual Studio, Office, Access, Excel, Word, PowerPoint, and Windows are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

DataDirect, DataDirect Connect, INTERSOLYV, and SequeLink are registered trademarks of DataDirect Technologies.

Portions of this product were created using LEADTOOLS © 1991-2000, LEAD Technologies, Inc. ALL RIGHTS RESERVED.
LEAD, LEADTOOLS, and LEADVIEW are registered trademarks of LEAD Technologies, Inc.

Portions of this product were based on the work of the FreeType Team (http.//www.freetype.org).

A portion of the SPSS software contains zlib technology. Copyright © 1995-2002 by Jean-loup Gailly and Mark Adler. The zlib
software is provided “as-is,” without express or implied warranty. In no event shall the authors of zlib be held liable for any
damages arising from the use of this software.

A portion of the SPSS software contains Sun Java Runtime libraries. Copyright © 2003 by Sun Microsystems, Inc. All rights
reserved. The Sun Java Runtime libraries include code licensed from RSA Security, Inc. Some portions of the libraries are
licensed from IBM and are available at Attp://oss.software.ibm.com/icu4j/. Sun makes no warranties to the software of any kind.
Sax Basic is a trademark of Sax Software Corporation. Copyright © 1993-2004 by Polar Engineering and Consulting. All
rights reserved.

SPSS Programming and Data Management, 4th Edition: A Guide for SPSS and SAS Users
Copyright © 2007 by SPSS Inc.

All rights reserved.

Printed in the United States of America.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of the publisher.

1234567890 1009 08 07

ISBN-13: 978-1-56827-390-7
ISBN-10: 1-56827-390-8

Preface

Experienced data analysts know that a successful analysis or meaningful report often
requires more work in acquiring, merging, and transforming data than in specifying
the analysis or report itself. SPSS contains powerful tools for accomplishing and
automating these tasks. While much of this capability is available through the
graphical user interface, many of the most powerful features are available only through
command syntax—and you can make the programming features of its command syntax
significantly more powerful by adding the ability to combine it with a full-featured
programming language. This book offers many examples of the kinds of things that
you can accomplish using SPSS command syntax by itself and in combination with the
Python® programming language.

Using This Book

The contents of this book and the accompanying CD are discussed in Chapter 1. In
particular, see the section “Using This Book™ if you plan to run the examples on the CD.
The CD also contains additional command files, macros, and scripts that are mentioned
but not discussed in the book and that can be useful for solving specific problems.

This edition has been updated to include numerous enhanced data management
features introduced in SPSS 15.0. Many examples will work with earlier versions, but
some examples rely on features not available prior to SPSS 15.0. Some of the Python
examples require SPSS 15.0.1 or later.

For SAS Users

If you have more experience with SAS than with SPSS for data management, see
Chapter 22 for comparisons of the different approaches to handling various types of
data management tasks. Quite often, there is not a simple command-for-command
relationship between the two programs, although each accomplishes the desired end.

Acknowledgments

This book reflects the work of many members of the SPSS staff who have contributed
examples here and in SPSS Developer Central, as well as that of Raynald Levesque,
whose examples formed the backbone of earlier editions and remain important in
this edition. We also wish to thank Stephanie Schaller, who provided many sample
SAS jobs and helped to define what the SAS user would want to see, as well as
Marsha Hollar and Brian Teasley, the authors of the original chapter “SPSS for SAS
Programmers.”

A Note from Raynald Levesque

It has been a pleasure to be associated with this project from its inception. I have for
many years tried to help SPSS users understand and exploit its full potential. In this
context, [am thrilled about the opportunities afforded by the Python integration and
invite everyone to visit my site at www.spsstools.net for additional examples. And I
want to express my gratitude to my spouse, Nicole Tousignant, for her continued
support and understanding.

Raynald Levesque

Contents

1 Overview 1
Using This Booko e 1
Documentation ReSourcesot 2

Part I: Data Management

2 Best Practices and Efficiency Tips 4
Working with Command Syntax 4

Creating Command SyntaxFiles........... 4
Running SPSSCommands 5
Syntax Rules 6
Customizing the Programming Environment 7
Displaying Commandsinthelog 7
Displaying the Status Bar in Command Syntax Windows 8
Protectingthe OriginalData i, 9
Do Not Overwrite Original Variables. 10
Using Temporary Transformations 10
Using Temporary Variables 11
Use EXECUTE Sparingly e 12
LagFunctions i e 13
Using SCASENUM to SelectCases. 15
MISSING VALUES Commandt 16
WRITE and XSAVE Commands. ..., 16
Using Comments.ot 16
Using SET SEED to Reproduce Random SamplesorValues.............. 17

Divide and Conquerttt e 18

Using INSERT with a Master Command Syntax File 19
Defining Global Settings. 19

3 Getting Data into SPSS 22

Getting Data from Databases 22
Installing Database Drivers 22
Database Wizard. 24
Reading a Single Database Table. 24
Reading Multiple Tables. 26

Reading Excel Files. i 29
Reading a “Typical” Worksheet. 30
Reading Multiple Worksheets, 32

Reading Text Data Files. i, 35
Simple TextDataFiles 36
Delimited TextDatat 37
Fixed-Width TextData 41
Text Data Files with Very Wide Records 45
Reading Different Typesof TextData 46

Reading Complex Text DataFiles. 48
Mixed Files i e 43
Grouped Files 49
Nested (Hierarchical)Files 52
RepeatingData i 58

Reading SASDataFiles 59

Reading StataDataFiles. 61

Vi

4 File Operations 62

Working with Multiple Data Sources., 62
Merging DataFiles i 66
Merging Files with the Same Cases but Different Variables 66
Merging Files with the Same Variables but Different Cases 70
Updating Data Files by Merging New Values from Transaction Files. ... 74
AggregatingData. 76
Aggregate Summary Functions 78
Weighting Data. 79
Changing File Structure i i 81
Transposing Cases and Variables. 82
CasestoVariables. i i 83
Variablesto Cases. i 86
5 Variable and File Properties 91
Variable Properties. i 91
Variable Labels 94
Value Labels 94
MissingValues i 95
MeasurementlLevel........ 95
Custom Variable Properties i 96
Using Variable Propertiesas Templates 98
File Properties e e 99
6 Data Transformations 101
Recoding Categorical Variables 101

vii

Binning Scale Variables 102

Simple Numeric Transformations 105
Arithmetic and Statistical Functions 106
Random Value and Distribution Functions. 107
String Manipulation 108
Changing the Case of String Values 109
Combining String Values 109
Taking Strings Apart 110
Working with Datesand Timeso, 114
Date Inputand DisplayFormats 115
Date and Time Functions i 117

7 Cleaning and Validating Data 123

Finding and Displaying Invalid Values 123
Excluding Invalid Data from Analysis 126
Finding and Filtering Duplicates 127
Data Validation Option 0 i 130

8 Conditional Processing, Looping, and
Repeating 133

Indenting Commands in Programming Structures 133
Conditional Processing.ottt e e e 134
Conditional Transformations 134
Conditional Case Selection 137
Simplifying Repetitive Tasks with DOREPEAT 138
ALL Keyword and Error Handling 141
VB CEOrS. ot 141

viii

Creating Variableswith VECTOR 143

DisappearingVectors i i 143
LoOp SHrUCTUIES .« . .ot 145
Indexing Clausesot e 146
Nested LOOpS . ..o oo 147
Conditional LOOPSo 149
Using XSAVE in a Loop to Builda DataFile...................... 150
Calculations Affected by Low Default MXLOOPS Setting 152

9 Exporting Data and Results 155
Output Management System. 155
Using Qutput as InputwithOMS 156
Adding Group Percentile Valuestoa DataFile................... 156
BootstrappingwithOMS 160
Transforming OXMLwith XSLT. i, 165
“Pushing” Contentfroman XMLFile 166
“Pulling” Contentfroman XMLFile 169
Positional Arguments versus Localized Text Attributes. 180
Layered Split-File Processing. i 181
Exporting Data to Other Applicationsand Formats 182
Saving Datain SASFormat 182
Saving Datain StataFormat., 183
Saving DatainExcelFormat. 184
Writing Data Backtoa Database. 184
Saving DatainTextFormat. 188
Exporting Results to PDF, Word, Excel, and PowerPoint. 188
Controlling and Saving OutputFiles. 189

10 Scoring Data with Predictive Models 191

Introduction e 191
Basicsof ScoringData......... 192
TransformingYourData 192
Merging Transformations and Model Specifications 193
Command Syntax for Scoring. 193
Mapping Model Variables to SPSS Variables 195
Missing ValuesinScoring i 195
Using Predictive Modeling to Identify Potential Customers 196
Building and Saving Predictive Models 196
Commands for Scoring YourData. 204
Including Post-Scoring Transformations 206
Getting Data and SavingResults 206
Running Your Scoring Job Using the SPSS Batch Facility. 208

Part Il: Programming with SPSS and Python

11 Introduction 210

12 Getting Started with Python Programming in

SPSS 213
The spss Python Module. 214
Submitting Commandsto SPSS. 215
Dynamically Creating SPSS Command Syntax. 217
Capturing and Accessing Output. 218
Python SyntaxRules. 220

Mixing Command Syntax and Program Blocks 223

Handling Errors. o 225
UsingaPython IDE. 226
Working with Multiple SPSS Versions. 229
Creating a Graphical UserInterface 229
Supplementary Python Modules for Use with SPSS 235
Getting Helpot 236
13 Best Practices 237
Creating Blocks of Command Syntax within Program Blocks. 237
Dynamically Specifying Command Syntax Using String Substitution 238
Using Raw StringsinPython. 241
Displaying Command Syntax Generated by Program Blocks 242
Handling Wide Qutputinthe Viewer 242
Creating User-Defined FunctionsinPython. 243
Creating a File Handle to the SPSS Install Directory 245
Choosing the Best Programming Technology 246
Using Exception HandlinginPython 247
Debugging Your PythonCode i 250

14 Working with Variable Dictionary Information 254

Summarizing Variables by MeasurementLevel 256
Listing Variables of a Specified Format............................ 257
Checking If a Variable Exists. 259
Creating Separate Lists of Numeric and String Variables. 260
Retrieving Definitions of User-Missing Values. 261

Xi

Using Object-Oriented Methods for Retrieving Dictionary Information

Getting Started with the VariableDictClass
Defining a List of Variables between Two Variables
Identifying Variables without Value Labels.
Retrieving Variable or Datafile Attributes
Using Regular Expressions to Select Variables.

15 Working with Case Data in the Active Dataset 275

Usingthe CursorClassot
Reading Case Data with the CursorClass.
Creating New SPSS Variables with the Cursor Class
Appending New Cases with the Cursor Class.
Example: Reducing a String to Minimum Length.
Example: Adding Group Percentile Values to a Dataset

Using the spssdata Module.
Reading Case Data with the SpssdataClass.
Creating New SPSS Variables with the Spssdata Class
Appending New Cases with the SpssdataClass.............
Creating a New Dataset with the SpssdataClass.

Example: Adding Group Percentile Values to a Dataset with the
SpssdataClass i

Example: Generating Simulated Data.

16 Retrieving Output from SPSS Commands

Getting Started with the XML Workspace
Writing XML Workspace ContentstoaFile
Usingthe spssauxModule

xii

17 Creating Procedures 327

Getting Started with Procedures. i, 327
Procedures with Multiple DataPasses 332
Creating Pivot Table Qutput. et 335
Treating Categories or Cells as Variable Names or Values 340
Specifying Formatting for Numeric Cell Values. 342

18 Data Transformations 344
Getting Started withthetrans Module 344
Using Functions from the extendedTransforms Module. 349
The searchand subsFunctions 350
The templatesub Function 354
The levenshteindistance Function, 357
The soundex and nysiis Functions 357
The strtodatetime Function 360
The datetimetostr Function 360
The lookup Function. 361

19 Modifying and Exporting Viewer Contents 363

Getting Started with the viewer Module 364

Persistence of Objects. i 365
Modifying PivotTables 366
Using the viewer Module froma PythonIDE 369

xiii

20 Tips on Migrating Command Syntax, Macro, and

Scripting Jobs to Python 371
Migrating Command Syntax Jobsto Python 3N
Migrating Macrosto Python. 375
Migrating Sax Basic ScriptstoPython 379

21 Special Topics 386
Using Regular Expressions 386

Locale ISSUBSot 390

22 SPSS for SAS Programmers 392
ReadingData i e 392

Reading Database Tables 392

Reading ExcelFiles i 395
ReadingTextData i 397
MergingDataFiles i 397

Merging Files with the Same Cases but Different Variables 398

Merging Files with the Same Variables but Different Cases 399
AggregatingData. 400
Assigning Variable Properties. 401
Variable Labels 402
ValueLabels o 402

Cleaning and ValidatingData 404

Finding and Displaying Invalid Values. 404

Finding and Filtering Duplicates. 406

Xiv

Transforming DataValues. i i 407

RecodingData. i 407
BandingData........... 408
Numeric Functions 410
Random Number Functions an
String Concatenation. 412
String Parsing e 413
Working with Datesand Times 414
Calculating and Converting Date and Time Intervals. 414
Adding to or Subtracting from One Date to Find Another Date 415
Extracting Date and Time Information 416
Custom Functions, Job Flow Control, and Global Macro Variables. 47
Creating Custom Functions 418
JobFlow Control 419
Creating Global Macro Variables 421
Setting Global Macro Variables to Values from the Environment. 422

Appendix

A Python Functions and Classes 424

spss.BasePivotTable Class i 425
Creating Pivot Tables with the SimplePivotTable Method 427
General Approach to Creating PivotTables 429
spss.BasePivotTable Methods, 437
Auxiliary Classes for Use with spss.BasePivotTable. 450

spss.BaseProcedure Class. i, 456

spss.CreateXPathDictionary Function. 459

spss.CursorClass.o 460
Read Mode (accessType="r)....... ..o, 460

XV

Write Mode (accessType="w'), 462

Append Mode (accessType="a’).co ... 465

spss.CursorMethods. 467
spss.DeleteXPathHandle Function 488
spss.EndProcedure Function 488
spss.EvaluateXPath Function 489
spss.GetCaseCount Function 490
spss.GetDefaultPlugInVersion Function 490
spss.GetHandleList Function. 491
spss.GetlLastErrorLevel and spss.GetLastErrorMessage Functions 491
spss.GetSPSSLowHigh Function. 492
spss.GetVarAttributeNames Function 493
spss.GetVarAttributes Function. 493
spss.GetVariableCount Function. L. 494
spss.GetVariableFormat Function 494
spss.GetVariableLabel Function L 497
spss.GetVariableMeasurementLevel Function. 497
spss.GetVariableName Function. 498
spss.GetVariableType Function. 498
spss.GetVarMissingValues Function. 499
spss.GetWeightVar Function. 499
spss.GetXmlUtf16 Function 500
spss.HasCursor Function i 500
spss.IsOutputOn Function. 500
spss.PylnvokeSpss.IsXDriven Function. 501
spss.SetDefaultPluginVersion Function. 501
spss.SetMacroValue Function 502
spss.SetOutput Function. 502
spss.ShowlnstalledPlugInVersions Function. 503
spss.SplitChange Function 503
spss.StartProcedure Function. 506

XVi

spss.StartSPSS Function 510
spss.StopSPSS Function. 510

spss.Submit Function 511
spss.TextBlock Class 512
append Method. 514
Index 515

xvii

Chapter

Overview

This book is divided into two main sections:

m Data management using the SPSS command language. Although many of these tasks
can also be performed with the menus and dialog boxes, some very powerful
features are available only with command syntax.

® Programming with SPSS and Python. The SPSS Python plug-in provides the ability
to integrate the capabilities of the Python programming language with SPSS.
One of the major benefits of Python is the ability to add jobwise flow control
to the SPSS command stream. SPSS can execute casewise conditional actions
based on criteria that evaluate each case, but jobwise flow control—such as
running different procedures for different variables based on data type or level of
measurement, or determining which procedure to run next based on the results
of the last procedure—is much more difficult. The SPSS Python plug-in makes
jobwise flow control much easier to accomplish.

For readers who may be more familiar with the commands in the SAS system, Chapter
22 provides examples that demonstrate how some common data management and
programming tasks are handled in both SAS and SPSS.

Using This Book

This book is intended for use with SPSS release 15.0. or later. Many examples will
work with earlier versions, but some commands and features are not available in earlier
releases. Some of the Python examples require SPSS 15.0.1.

Most of the examples shown in this book are designed as hands-on exercises that
you can perform yourself. The CD that comes with the book contains the command
files and data files used in the examples. All of the sample files are contained in the
examples folder.

B \examples\commands contains SPSS command syntax files.

2

Chapter 1

B \examples\data contains data files in a variety of formats.

B \examples\python contains sample Python files.

All of the sample command files that contain file access commands assume that you
have copied the examples folder to your C drive. For example:

GET FILE='c:\examples\data\duplicates.sav'.
SORT CASES BY ID_house(A) ID_person(A) int_date(A)
AGGREGATE OUTFILE = 'C:\temp\tempdata.sav'

/BREAK = ID_house ID_person

/DuplicateCount = N.

Many examples, such as the one above, also assume that you have a C:\temp folder
for writing temporary files. You can access command and data files from the
accompanying CD, substituting the drive location for C: in file access commands. For
commands that write files, however, you need to specify a valid folder location on a
device for which you have write access.

Documentation Resources

The SPSS Base User s Guide documents the data management tools available through
the graphical user interface. The material is similar to that available in the Help system.
The SPSS Command Syntax Reference, which is installed as a PDF file with the
SPSS system, is a complete guide to the specifications for each SPSS command. The

guide provides many examples illustrating individual commands. It has only a few
extended examples illustrating how commands can be combined to accomplish the
kinds of tasks that analysts frequently encounter. Sections of the SPSS Command
Syntax Reference of particular interest include:

® The appendix “Defining Complex Files,” which covers the commands specifically
intended for reading common types of complex files

B The INPUT PROGRAM—END INPUT PROGRAM command, which provides rules
for working with input programs

All of the command syntax documentation is also available in the Help system. If you
type a command name or place the cursor inside a command in a syntax window and
press F1, you will be taken directly to the help for that command.

Part I:
Data Management

Chapter

Best Practices and Efficiency Tips

If you haven’t worked with SPSS command syntax before, you will probably start with
simple jobs that perform a few basic tasks. Since it is easier to develop good habits
while working with small jobs than to try to change bad habits once you move to more
complex situations, you may find the information in this chapter helpful.

Some of the practices suggested in this chapter are particularly useful for large
projects involving thousands of lines of code, many data files, and production jobs run
on a regular basis and/or on multiple data sources.

Working with Command Syntax

You don’t need to be a programmer to write SPSS command syntax, but there are a
few basic things you should know. A detailed introduction to SPSS command syntax is
available in the “Universals” section in the SPSS Command Syntax Reference.

Creating Command Syntax Files

An SPSS command file is a simple text file. You can use any text editor to create

a command syntax file, but SPSS provides a number of tools to make your job
casier. Most features available in the graphical user interface have command syntax
equivalents, and there are several ways to reveal this underlying command syntax:

m Use the Paste button. Make selections from the menus and dialog boxes, and then
click the Paste button instead of the OK button. This will paste the underlying
commands into a command syntax window.

m Record commands in the log. Sclect Display commands in the log on the Viewer
tab in the Options dialog box (Edit menu, Options), or run the command SET
PRINTBACK ON. As you run analyses, the commands for your dialog box
selections will be recorded and displayed in the log in the Viewer window. You can

5

Best Practices and Efficiency Tips

then copy and paste the commands from the Viewer into a syntax window or text
editor. This setting persists across sessions, so you have to specify it only once.

Retrieve commands from the journal file. Most actions that you perform in the
graphical user interface (and all commands that you run from a command syntax
window) are automatically recorded in the journal file in the form of command
syntax. The default name of the journal file is spss.jnl. The default location varies,
depending on your operating system. Both the name and location of the journal file
are displayed on the General tab in the Options dialog box (Edit menu, Options).

Running SPSS Commands

Once you have a set of commands, you can run the commands in a number of ways:

Highlight the commands that you want to run in a command syntax window and
click the Run button.

Invoke one command file from another with the INCLUDE or INSERT command.
For more information, see Using INSERT with a Master Command Syntax File
onp. 19.

Use the Production Facility to create production jobs that can run unattended and
even start unattended (and automatically) using common scheduling software. See
the Help system for more information about the Production Facility.

Use SPSSB (available only with the server version) to run command files from a
command line and automatically route results to different output destinations in
different formats. See the SPSSB documentation supplied with the SPSS server
software for more information.

6

Chapter 2
Figure 2-1
Command syntax pasted from a dialog box
& Syntax1 - Syntax Editor | =]
Eile Edit Wiew Data Transform Agnalyze Graphs Utilities Run Add-ons Window Help
FREQUEMCIES

WARIABLES=marital
/BARCHART PERCENT
{ORDER= ANALYSIS .

Syntax Rules

B Commands run from a command syntax window during a typical SPSS session

must follow the interactive command syntax rules.

B Commands files run via SPSSB or invoked via the INCLUDE command must

follow the batch command syntax rules.

Interactive Rules

The following rules apply to command specifications in interactive mode:

m FEach command must start on a new line. Commands can begin in any column

of a command line and continue for as many lines as needed. The exception is

the END DATA command, which must begin in the first column of the first line
after the end of data.

Each command should end with a period as a command terminator. It is best to
omit the terminator on BEGIN DATA, however, so that inline data are treated as
one continuous specification.

The command terminator must be the last nonblank character in a command.

In the absence of a period as the command terminator, a blank line is interpreted as
a command terminator.

7

Best Practices and Efficiency Tips

Note: For compatibility with other modes of command execution (including command
files run with INSERT or INCLUDE commands in an interactive session), each line of
command syntax should not exceed 256 bytes.

Batch Rules

The following rules apply to command specifications in batch or production mode:

® All commands in the command file must begin in column 1. You can use plus
(+) or minus (-) signs in the first column if you want to indent the command
specification to make the command file more readable.

® [f multiple lines are used for a command, column 1 of each continuation line must
be blank.

® Command terminators are optional.

B A line cannot exceed 256 bytes; any additional characters are truncated.

Customizing the Programming Environment

There are a few global settings and customization features that may make working with
command syntax a little easier.

Displaying Commands in the Log

By default, commands that have been run are not displayed in the log, which can
make it difficult to interpret error messages. To display commands in the log, use
the command:

SET PRINTBACK = ON.
Or, using the graphical user interface:
» From the menus, choose:
Edit
Options...
» Click the Viewer tab.

» Select (check) Display commands in the log.

8

Chapter 2

Figure 2-2
Log with and without commands displayed

Log without comcahnds displayed

>Error # 4285 in coluwn 16. Text: oldvarl

FIncorrect variable name: either the nawe is wore thah 64 characters, or it
¥iz not defined by a previous comwand.

#This command not executed.

Log with commands displayed

RECODE salarvy
(Lo THRU 25000=1) (LC THRU 50000=2)
(LD THRU 75000=3) (75000 THRU HI=4)
(ELSE=COPY] INTO salcat.

COMPUTE constant=1.

COMPUTE newvar=oldvarl+l.

*Error # 4285 in colwwn 16. Text: oldvarl

>Incorrect wvarishle name: either the nawe is more than 64 characters, or it
+is not defined by a previous cormwand.

>Thiz command not executed.

SORT CASES BY gender.
SAVE OUTFILE='c:'\tewp'tempdata.sav'.

Displaying the Status Bar in Command Syntax Windows

In addition to various status messages, the status bar at the bottom of a command
syntax window displays the current line number and character position within the line.
Since error messages typically contain information about the column position where
an error was encountered, the column position information in the status bar can help
you to pinpoint errors. (Note: You may have to increase the width of the command
syntax window to see this information.)

The status bar is displayed by default. If it is currently not displayed, choose Status
Bar from the View menu in the command syntax window.

9

Best Practices and Efficiency Tips

Figure 2-3

Status bar in command syntax window with current line number and column position
displayed

2 Syntax1 - SPSS Syntax Editor E]@

File Edit wiew Data Transform Analyze Graphs Utlities Run Add-ons window Help
EHE T & EH=L & » =]

RECZCODE salary
(LO THRU 25000=1} (LO THRU S0000=2)
(LO THRU 75000=3) {75000 THRU HI=4)
(ELSE=COPY) INTO salcat

COMPUTE constant=1.

COMPUTE newwar=oldvar1+1.

SORT CASES BY gender.

SAVE OUTFILE="c\tempitempdata sav'.

SPSS Processor is ready Ln& Col 16

Protecting the Original Data

The original data file should be protected from modifications that may alter or delete
original variables and/or cases. If the original data are in an external file format (for
example, text, Excel, or database), there is little risk of accidentally overwriting the
original data while working in SPSS. However, if the original data are in SPSS-format
data files (.sav), there are many transformation commands that can modify or
destroy the data, and it is not difficult to inadvertently overwrite the contents of an
SPSS-format data file. Overwriting the original data file may result in a loss of data
that cannot be retrieved.

There are several ways in which you can protect the original data, including:
m Storing a copy in a separate location, such as on a CD, that can’t be overwritten.

m Using the operating system facilities to change the read-write property of the file
to read-only. If you aren’t familiar with how to do this in the operating system,
you can choose Mark File Read Only from the File menu or use the PERMISSIONS
subcommand on the SAVE command.

The ideal situation is then to load the original (protected) data file into SPSS and do
all data transformations, recoding, and calculations using SPSS. The objective is to
end up with one or more command syntax files that start from the original data and
produce the required results without any manual intervention.

10

Chapter 2

Do Not Overwrite Original Variables

It is often necessary to recode or modify original variables, and it is good practice to
assign the modified values to new variables and keep the original variables unchanged.
For one thing, this allows comparison of the initial and modified values to verify

that the intended modifications were carried out correctly. The original values can
subsequently be discarded if required.

Example

*These commands overwrite existing variables.

COMPUTE varl=varl*2.

RECODE var2 (1 thru 5 = 1) (6 thru 10 = 2).

*These commands create new variables.

COMPUTE varl_new=varl*2.

RECODE var2 (1 thru 5 = 1) (6 thru 10
/INTO var2_new.

2) (ELSE=COPY)

B The difference between the two COMPUTE commands is simply the substitution of
a new variable name on the left side of the equals sign.

® The second RECODE command includes the TNTO subcommand, which specifies a
new variable to receive the recoded values of the original variable. ELSE=COPY
makes sure that any values not covered by the specified ranges are preserved.

Using Temporary Transformations

You can use the TEMPORARY command to temporarily transform existing variables for
analysis. The temporary transformations remain in effect through the first command
that reads the data (for example, a statistical procedure), after which the variables
revert to their original values.

Example

*temporary.sps.

DATA LIST FREE /varl var2.
BEGIN DATA

12

3 4

56

7 8

9 10

END DATA.

TEMPORARY .

1

Best Practices and Efficiency Tips

COMPUTE varl=varl+ 5.
RECODE var2 (1 thru 5=1) (6 thru 10=2).
FREQUENCIES
/VARIABLES=varl var2
/STATISTICS=MEAN STDDEV MIN MAX.
DESCRIPTIVES
/VARIABLES=varl var2
/STATISTICS=MEAN STDDEV MIN MAX.

B The transformed values from the two transformation commands that follow the
TEMPORARY command will be used in the FREQUENCIES procedure.

B The original data values will be used in the subsequent DESCRIPTIVES procedure,
yielding different results for the same summary statistics.

Under some circumstances, using TEMPORARY will improve the efficiency of a

job when short-lived transformations are appropriate. Ordinarily, the results of
transformations are written to the virtual active file for later use and eventually are
merged into the saved SPSS data file. However, temporary transformations will not
be written to disk, assuming that the command that concludes the temporary state is
not otherwise doing this, saving both time and disk space. (TEMPORARY followed by
SAVE, for example, would write the transformations.)

If many temporary variables are created, not writing them to disk could be a
noticeable saving with a large data file. However, some commands require two or more
passes of the data. In this situation, the temporary transformations are recalculated for
the second or later passes. If the transformations are lengthy and complex, the time
required for repeated calculation might be greater than the time saved by not writing
the results to disk. Experimentation may be required to determine which approach is
more efficient.

Using Temporary Variables

For transformations that require intermediate variables, use scratch (temporary)
variables for the intermediate values. Any variable name that begins with a pound
sign (#) is treated as a scratch variable that is discarded at the end of the series of
transformation commands when SPSS encounters an EXECUTE command or other
command that reads the data (such as a statistical procedure).

Example

*scratchvar.sps.
DATA LIST FREE / varl.

12

Chapter 2

BEGIN DATA

12345

END DATA.

COMPUTE factor=1.

LOOP #tempvar=1 TO varl.

- COMPUTE factor=factor * #tempvar.

END LOOP.
EXECUTE.
Figure 2-4
Result of loop with scratch variable
& “Untitled2 [] - SPSS Data Editor o
File Edit “iew Data Transform Analvze Graphs Utlities Add-ons Window Help
1 warl 1
varl factor | war var war ~
1] 1.00 1.00 =
2 200 2.00
3 3.00 5.00
4 4.00 24.00
5 5.00 120.00 ™
4 v \Data View £ Variahle View f [<] B

® The loop structure computes the factorial for each value of var/ and puts the
factorial value in the variable factor.

The scratch variable #tempvar is used as an index variable for the loop structure.
For each case, the COMPUTE command is run iteratively up to the value of var/.

m For each iteration, the current value of the variable factor is multiplied by the
current loop iteration number stored in #tempvar.

B The EXECUTE command runs the transformation commands, after which the
scratch variable is discarded.

The use of scratch variables doesn’t technically “protect” the original data in any way,
but it does prevent the data file from getting cluttered with extraneous variables. If you
need to remove temporary variables that still exist after reading the data, you can use
the DELETE VARIABLES command to eliminate them.

Use EXECUTE Sparingly

SPSS is designed to work with large data files (the current version can accommodate
2.15 billion cases). Since going through every case of a large data file takes time, the
software is also designed to minimize the number of times it has to read the data.

13

Best Practices and Efficiency Tips

Statistical and charting procedures always read the data, but most transformation
commands (for example, COMPUTE, RECODE, COUNT, SELECT IF) do not require a
separate data pass.

The default behavior of the graphical user interface, however, is to read the data
for each separate transformation so that you can see the results in the Data Editor
immediately. Consequently, every transformation command generated from the dialog
boxes is followed by an EXECUTE command. So if you create command syntax by
pasting from dialog boxes or copying from the log or journal, your command syntax
may contain a large number of superfluous EXECUTE commands that can significantly
increase the processing time for very large data files.

In most cases, you can remove virtually all of the auto-generated EXECUTE
commands, which will speed up processing, particularly for large data files and jobs
that contain many transformation commands.

To turn off the automatic, immediate execution of transformations and the associated
pasting of EXECUTE commands:

» From the menus, choose:
Edit
Options...

» Click the Data tab.

» Select Calculate values before used.

Lag Functions

One notable exception to the above rule is transformation commands that contain lag
functions. In a series of transformation commands without any intervening EXECUTE
commands or other commands that read the data, lag functions are calculated after
all other transformations, regardless of command order. While this might not be a
consideration most of the time, it requires special consideration in the following cases:

m The lag variable is also used in any of the other transformation commands.

B One of the transformations selects a subset of cases and deletes the unselected
cases, such as SELECT IF or SAMPLE.

Example

*lagfunction.sps.

14

Chapter 2

*create some data.

DATA LIST FREE /varl.

BEGIN DATA

12345

END DATA.

COMPUTE var2=varl.
********************************’
*Lag without intervening EXECUTE.
COMPUTE lagvarl=LAG(varl).
COMPUTE varl=varl*2.

EXECUTE.
********************************.
*Lag with intervening EXECUTE.
COMPUTE lagvar2=LAG(var2).
EXECUTE.

COMPUTE var2=var2*2.

EXECUTE.

Figure 2-5
Results of lag functions displayed in Data Editor

%] “Untitled3 [] - SPSS Data Editor =2ty
File Edit ‘iew Data Transform Analyze Graphs Utilities add-ons Window Help
war] | var2 | lagvarl | lagvar2 | war s

1 2.00 2.00 . . I

2 4.00 4.00 2.00 1.00

E 5.00 5.00 4.00 2.00

4 g.00 g.00 6.00 3.00

5 10.00 10.00 g.00 4.00

6 -V
4| v |\ Data View £ variahle View f [<] | [»]]

m Although varl and var2 contain the same data values, lagvari and lagvar2 are

very different from each other.

® Without an intervening EXECUTE command, /agvarl is based on the transformed

values of varl.

® With the EXECUTE command between the two transformation commands, the

value of lagvar? is based on the original value of var2.

B Any command that reads the data will have the same effect as the EXECUTE
command. For example, you could substitute the FREQUENCIES command and

achieve the same result.

15

Best Practices and Efficiency Tips

In a similar fashion, if the set of transformations includes a command that selects a
subset of cases and deletes unselected cases (for example, SELECT IF), lags will be
computed after the case selection. You will probably want to avoid case selection
criteria based on lag values—unless you EXECUTE the lags first.

Using SCASENUM to Select Cases

The value of the system variable $CASENUM is dynamic. If you change the sort order
of cases, the value of $CASENUM for each case changes. If you delete the first case,
the case that formerly had a value of 2 for this system variable now has the value 1.
Using the value of SCASENUM with the SELECT IF command can be a little tricky
because SELECT IF deletes each unselected case, changing the value of $CASENUM
for all remaining cases.

For example, a SELECT IF command of the general form:
SELECT IF (SCASENUM > [positive value]).

will delete all cases because regardless of the value specified, the value of SCASENUM
for the current case will never be greater than 1. When the first case is evaluated, it has
a value of 1 for SCASENUM and is therefore deleted because it doesn’t have a value
greater than the specified positive value. The erstwhile second case then becomes the
first case, with a value of 1, and is consequently also deleted, and so on.

The simple solution to this problem is to create a new variable equal to the original
value of SCASENUM. However, command syntax of the form:

COMPUTE CaseNumber=$CASENUM.
SELECT IF (CaseNumber > [positive value]).

will still delete all cases because each case is deleted before the value of the new
variable is computed. The correct solution is to insert an EXECUTE command between
COMPUTE and SELECT IF, as in:

COMPUTE CaseNumber=$CASENUM.
EXECUTE.
SELECT IF (CaseNumber > [positive value]).

16

Chapter 2

MISSING VALUES Command

If you have a series of transformation commands (for example, COMPUTE, IF, RECODE)
followed by a MISSING VALUES command that involves the same variables, you
may want to place an EXECUTE statement before the MISSING VALUES command.
This is because the MISSING VALUES command changes the dictionary before the
transformations take place.

Example

IF (x = 0) y = z*2.
MISSING VALUES x (0).

The cases where x = 0 would be considered user-missing on x, and the transformation
of y would not occur. Placing an EXECUTE before MISSING VALUES allows the
transformation to occur before 0 is assigned missing status.

WRITE and XSAVE Commands

In some circumstances, it may be necessary to have an EXECUTE command after a
WRITE or an XSAVE command. For more information, see Using XSAVE in a Loop to
Build a Data File in Chapter 8 on p. 150.

Using Comments

It is always a good practice to include explanatory comments in your code. In SPSS,
you can do this in several ways:

COMMENT Get summary stats for scale variables.
* An asterisk in the first column also identifies comments.
FREQUENCIES
VARIABLES=income ed reside
/FORMAT=LIMIT(10) /*avoid long frequency tables
/STATISTICS=MEAN /*arithmetic average*/ MEDIAN.
* A macro name like !mymacro in this comment may invoke the macro.
/* A macro name like !mymacro in this comment will not invoke the macro*/.

B The first line of a comment can begin with the keyword COMMENT or with an
asterisk (*).

m Comment text can extend for multiple lines and can contain any characters.
The rules for continuation lines are the same as for other commands. Be sure
to terminate a comment with a period.

17

Best Practices and Efficiency Tips

Use /* and */ to set off a comment within a command.

The closing */ is optional when the comment is at the end of the line. The command
can continue onto the next line just as if the inserted comment were a blank.

m To ensure that comments that refer to macros by name don’t accidently invoke
those macros, use the /* [comment text] */ format.

Using SET SEED to Reproduce Random Samples or Values

When doing research involving random numbers—for example, when randomly
assigning cases to experimental treatment groups—you should explicitly set the
random number seed value if you want to be able to reproduce the same results.

The random number generator is used by the SAMPLE command to generate random
samples and is used by many distribution functions (for example, NORMAL, UNIFORM)
to generate distributions of random numbers. The generator begins with a seed, a large
integer. Starting with the same seed, the system will repeatedly produce the same
sequence of numbers and will select the same sample from a given data file. At the
start of each session, the seed is set to a value that may vary or may be fixed, depending
on your current settings. The seed value changes each time a series of transformations
contains one or more commands that use the random number generator.

Example

To repeat the same random distribution within a session or in subsequent sessions, use
SET SEED before each series of transformations that use the random number generator
to explicitly set the seed value to a constant value.

*set_seed.sps.

GET FILE = 'c:\examples\datal\onevar.sav'.
SET SEED = 123456789.

SAMPLE .1.

LIST.

GET FILE = 'c:\examples\datal\onevar.sav'.
SET SEED = 123456789.

SAMPLE .1.

LIST.

m Before the first sample is taken the first time, the seed value is explicitly set with
SET SEED.

B The LIST command causes the data to be read and the random number generator
to be invoked once for each original case. The result is an updated seed value.

18

Chapter 2

m The second time the data file is opened, SET SEED sets the seed to the same value
as before, resulting in the same sample of cases.

B Both SET SEED commands are required because you aren’t likely to know what
the initial seed value is unless you set it yourself.

Note: This example opens the data file before each SAMPLE command because
successive SAMPLE commands are cumulative within the active dataset.

SET SEED versus SET MTINDEX

SPSS provides two random number generators, and SET SEED sets the starting value
for only the default random number generator (SET RNG=MC). If you are using the
newer Mersenne Twister random number generator (SET RNG=MT), the starting value
is set with SET MTINDEX.

Divide and Conquer

A time-proven method of winning the battle against programming bugs is to split the
tasks into separate, manageable pieces. It is also easier to navigate around a syntax file
of 200-300 lines than one of 2,000-3,000 lines.

Therefore, it is good practice to break down a program into separate stand-alone
files, each performing a specific task or set of tasks. For example, you could create
separate command syntax files to:

B Prepare and standardize data.

m Merge data files.

m Perform tests on data.

B Report results for different groups (for example, gender, age group, income
category).

Using the INSERT command and a master command syntax file that specifies all of the
other command files, you can partition all of these tasks into separate command files.

19

Best Practices and Efficiency Tips
Using INSERT with a Master Command Syntax File

The INSERT command provides a method for linking multiple syntax files together,
making it possible to reuse blocks of command syntax in different projects by using a
“master” command syntax file that consists primarily of INSERT commands that refer
to other command syntax files.

Example

INSERT FILE
INSERT FILE
INSERT FILE
INSERT FILE

"c:\examples\data\prepare data.sps" CD=YES.
"combine data.sps".

"do tests.sps".

"report groups.sps".

® FEach INSERT command specifies a file that contains SPSS command syntax.

m By default, inserted files are read using interactive syntax rules, and each
command should end with a period.

m The first INSERT command includes the additional specification CD=YES. This
changes the working directory to the directory included in the file specification,
making it possible to use relative (or no) paths on the subsequent INSERT
commands.

INSERT versus INCLUDE

INSERT is a newer, more powerful and flexible alternative to INCLUDE. Files included
with INCLUDE must always adhere to batch syntax rules, and command processing
stops when the first error in an included file is encountered. You can effectively
duplicate the INCLUDE behavior with SYNTAX=BATCH and ERROR=STOP on the
INSERT command.

Defining Global Settings

In addition to using INSERT to create modular master command syntax files, you
can define global settings that will enable you to use those same command files for
different reports and analyses.

20

Chapter 2

Example

You can create a separate command syntax file that contains a set of FILE HANDLE
commands that define file locations and a set of macros that define global variables

for client name, output language, and so on. When you need to change any settings,
you change them once in the global definition file, leaving the bulk of the command
syntax files unchanged.

*define_globals.sps.

FILE HANDLE data /NAME='c:\examples\data'.

FILE HANDLE commands /NAME='c:\examples\commands'.
FILE HANDLE spssdir /NAME='c:\program files\spss'.
FILE HANDLE tempdir /NAME='d:\temp'.

DEFINE !enddate()DATE.DMY(1,1,2004) !ENDDEFINE.
DEFINE !olang()English!ENDDEFINE.

DEFINE !client()"ABC Inc"!ENDDEFINE.

DEFINE !title()TITLE !client.!ENDDEFINE.

m The first two FILE HANDLE commands define the paths for the data and command
syntax files. You can then use these file handles instead of the full paths in any
file specifications.

® The third FILE HANDLE command contains the path to the SPSS folder. This
path can be useful if you use any of the command syntax or script files that are
installed with SPSS.

® The last FILE HANDLE command contains the path of a temporary folder. It is
very useful to define a temporary folder path and use it to save any intermediary
files created by the various command syntax files making up the project. The main
purpose of this is to avoid crowding the data folders with useless files, some of
which might be very large. Note that here the temporary folder resides on the D
drive. When possible, it is more efficient to keep the temporary and main folders
on different hard drives.

B The DEFINE-!ENDDEFINE structures define a series of macros. This example uses
simple string substitution macros, where the defined strings will be substituted
wherever the macro names appear in subsequent commands during the session.

B ! enddate contains the end date of the period covered by the data file. This can be
useful to calculate ages or other duration variables as well as to add footnotes to
tables or graphs.

B ! olang specifies the output language.

21

Best Practices and Efficiency Tips

B !client contains the client’s name. This can be used in titles of tables or graphs.

B ! title specifies a TITLE command, using the value of the macro /client as the
title text.

The master command syntax file might then look something like this:

INSERT FILE = "c:\examples\commands\define_globals.sps".
ltitle.

INSERT FILE = "data\prepare data.sps".

INSERT FILE = "commands\combine data.sps".

INSERT FILE = "commands\do tests.sps".

INCLUDE FILE = "commands\report groups.sps".

m The first INSERT runs the command syntax file that defines all of the global

settings. This needs to be run before any commands that invoke the macros
defined in that file.

B ! title will print the client’s name at the top of each page of output.

B "data" and "commands" in the remaining INSERT commands will be expanded
to "c:\examples\data" and "c:\examples\commands", respectively.

Note: Using absolute paths or file handles that represent those paths is the most reliable
way to make sure that SPSS finds the necessary files. Relative paths may not work as
you might expect, since they refer to the current working directory, which can change
frequently. You can also use the CD command or the CD keyword on the INSERT
command to change the working directory.

Chapter

3

Getting Data into SPSS

Before you can work with data in SPSS, you need some data to work with. There are
several ways to get data into the application:

® Open a data file that has already been saved in SPSS format.
® Enter data manually in the Data Editor.

B Read a data file from another source, such as a database, text data file, spreadsheet,
SAS, or Stata.

Opening an SPSS-format data file is simple, and manually entering data in the Data
Editor is not likely to be your first choice, particularly if you have a large amount
of data. This chapter focuses on how to read data files created and saved in other
applications and formats.

Getting Data from Databases

SPSS relies primarily on ODBC (open database connectivity) to read data from
databases. ODBC is an open standard with versions available on many platforms,
including Windows, UNIX, and Macintosh.

Installing Database Drivers

You can read data from any database format for which you have a database driver. In
local analysis mode, the necessary drivers must be installed on your local computer.
In distributed analysis mode (available with the Server version), the drivers must be
installed on the remote server.

ODBC database drivers for a wide variety of database formats are included on the
SPSS installation CD, including:

m Access

22

23

Getting Data into SPSS

Btrieve
DB2
dBASE
Excel
FoxPro
Informix
Oracle
Paradox
Progress
SQL Base
SQL Server
Sybase

Most of these drivers can be installed by installing the SPSS Data Access Pack.
You can install the SPSS Data Access Pack from the AutoPlay menu on the SPSS
installation CD.

If you need a Microsoft Access driver, you will need to install the Microsoft Data
Access Pack. An installable version is located in the Microsoft Data Access Pack
folder on the SPSS installation CD.

Before you can use the installed database drivers, you may also need to configure
the drivers using the Windows ODBC Data Source Administrator. For the SPSS Data
Access Pack, installation instructions and information on configuring data sources are
located in the Installation Instructions folder on the SPSS installation CD.

OLE DB
Starting with SPSS 14.0, some support for OLE DB data sources is provided.

To access OLE DB data sources, you must have the following items installed on the
computer that is running SPSS:

®m . NET framework
B Dimensions Data Model and OLE DB Access

Versions of these components that are compatible with this release of SPSS can be
installed from the SPSS installation CD and are available on the AutoPlay menu.

24

Chapter 3

m Table joins are not available for OLE DB data sources. You can read only one
table at a time.

B You can add OLE DB data sources only in local analysis mode. To add OLE
DB data sources in distributed analysis mode on a Windows server, consult your
system administrator.

m In distributed analysis mode (available with SPSS Server), OLE DB data sources
are available only on Windows servers, and both .NET and the Dimensions Data
Model and OLE DB Access must be installed on the server.

Database Wizard

It’s probably a good idea to use the Database Wizard (File menu, Open Database) the
first time you retrieve data from a database source. At the last step of the wizard, you
can paste the equivalent commands into a command syntax window. Although the
SQL generated by the wizard tends to be overly verbose, it also generates the CONNECT
string, which you might never figure out without the wizard.

Reading a Single Database Table

SPSS reads data from databases by reading database tables. You can read information
from a single table or merge data from multiple tables in the same database. A single
database table has basically the same two-dimensional structure as an SPSS data file:
records are cases and fields are variables. So, reading a single table can be very simple.

Example

This example reads a single table from an Access database. It reads all records and
fields in the table.

*accessl.sps.
GET DATA /TYPE=0ODBC /CONNECT=
'DSN=Microsoft Access;DBQ=c:\examples\data\dm_demo.mdb; '+
' DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/SQL = 'SELECT * FROM CombinedTable'.
EXECUTE.

m The GET DATA command is used to read the database.

25

Getting Data into SPSS

B TYPE=0DBC indicates that an ODBC driver will be used to read the data. This is
required for reading data from any database, and it can also be used for other data
sources with ODBC drivers, such as Excel workbooks. For more information, see
Reading Multiple Worksheets on p. 32.

B CONNECT identifies the data source. For this example, the CONNECT string was
copied from the command syntax generated by the Database Wizard. The entire
string must be enclosed in single or double quotes. In this example, we have split
the long string onto two lines using a plus sign (+) to combine the two strings.

® The SQL subcommand can contain any SQL statements supported by the database
format. Each line must be enclosed in single or double quotes.

B SELECT * FROM CombinedTable reads all of the fields (columns) and all
records (rows) from the table named CombinedTable in the database.

B Any field names that are not valid SPSS variable names are automatically
converted to valid variable names, and the original field names are used as variable
labels. In this database table, many of the field names contain spaces, which are
removed in the variable names.

Figure 3-1
Database field names converted to valid variable names
& “Untitled2 [] - SPSS Data Editor =Jaltd
File Edit Wiew Data Transform Analvze Graphs Utilities Add-ons wWindow Help
Mame | Type | Yyidth | Decimals | Label |®
111D MNurmeric 11 0
2|Age Mumeric 8 2
3| MaritalStatus MNurmeric 8 2 Marital Status
4{Incaome MNurneric g 2
allncomeCategary |Mumeric g 2 Incame Category
G|Car Murneric g 2
7 [CarCategary Mumeric 8 2 Car Category
8|Education MNurmeric 8 2
9[Employ Mumeric 8 2
AN Mo~ Bl mvim (=} 1 [
<[v |\ Data View }Variable View f < >
Example

Now we’ll read the same database table—except this time, we’ll read only a subset of
fields and records.

*access2.sps.

26

Chapter 3

GET DATA /TYPE=ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb; '+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/SQL =
'SELECT Age, Education, [Income Categoryl]'
' FROM CombinedTable'
' WHERE ([Marital Status] <> 1 AND Internet = 1)'.

EXECUTE.

m The SELECT clause explicitly specifies only three fields from the file; so, the active
dataset will contain only three variables.

m The WHERE clause will select only records where the value of the Marital Status
field is not 1 and the value of the Internet field is 1. In this example, that means
only unmarried people who have Internet service will be included.

Two additional details in this example are worth noting:

m The field names Income Category and Marital Status are enclosed in brackets.
Since these field names contain spaces, they must be enclosed in brackets or
quotes. Since single quotes are already being used to enclose each line of the SQL
statement, the alternative to brackets here would be double quotes.

m We’ve put the FROM and WHERE clauses on separate lines to make the code easier to
read; however, in order for this command to be read properly, each of those lines
also has a blank space between the starting single quote and the first word on the
line. When the command is processed, all of the lines of the SQL statement are
merged together in a very literal fashion. Without the space before WHERE, the
program would attempt to read a table named CombinedTableWhere, and an error
would result. As a general rule, you should probably insert a blank space between
the quotation mark and the first word of each continuation line.

Reading Multiple Tables

You can combine data from two or more database tables by “joining” the tables. The
active dataset can be constructed from more than two tables, but each “join” defines a
relationship between only two of those tables:

®m Inner join. Records in the two tables with matching values for one or more specified
fields are included. For example, a unique ID value may be used in each table, and
records with matching ID values are combined. Any records without matching
identifier values in the other table are omitted.

27

Getting Data into SPSS

m Left outer join. All records from the first table are included regardless of the criteria
used to match records.

m Right outer join. Essentially the opposite of a left outer join. So, the appropriate
one to use is basically a matter of the order in which the tables are specified in the
SQL SELECT clause.

Example

In the previous two examples, all of the data resided in a single database table. But
what if the data were divided between two tables? This example merges data from two
different tables: one containing demographic information for survey respondents and
one containing survey responses.

*access_multtablesl.sps.
GET DATA /TYPE=ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb; '+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/SQL =
'"SELECT * FROM DemographicInformation, SurveyResponses'
' WHERE DemographicInformation.ID=SurveyResponses.ID'.
EXECUTE.

m The SELECT clause specifies all fields from both tables.

m The WHERE clause matches records from the two tables based on the value of the
ID field in both tables. Any records in either table without matching /D values in
the other table are excluded.

® The result is an inner join in which only records with matching /D values in both
tables are included in the active dataset.

Example

In addition to one-to-one matching, as in the previous inner join example, you can also
merge tables with a one-to-many matching scheme. For example, you could match a
table in which there are only a few records representing data values and associated
descriptive labels with values in a table containing hundreds or thousands of records
representing survey respondents.

In this example, we read data from an SQL Server database, using an outer join to
avoid omitting records in the larger table that don’t have matching identifier values in
the smaller table.

*sglserver_outer_join.sps.

28

Chapter 3

GET DATA /TYPE=0DBC

/CONNECT= 'DSN=SQLServer;UID=;APP=SPSS For Windows;'
'WSID=ROLIVERLAP; Network=DBMSSOCN; Trusted_Connection=Yes'

/SQL =
'SELECT SurveyResponses.ID, SurveyResponses.Internet, '
' [Value Labels].[Internet Labell]'’
' FROM SurveyResponses LEFT OUTER JOIN [Value Labels]'
' ON SurveyResponses.Internet'
' = [Value Labels].[Internet Value]'.

Figure 3-2
SQL Server tables to be merged with outer join

iti 2:Data in Table ‘SurveyResponses” in ‘sql_server_dem... | _ (O] x|

BlEEwEf| ! &[22 RS
D [wireless [Mulkline [Woice [Pager [internet =

|1 0 1 1 1 0

mE 1 o 1 1 0

mE o o 0 0 0

|4 0 0 0 0 0

s o 1 0 0 1

e 1 1 0 0 1

— ; é 'Hi 3:Data in Table 'Value Labels® in *sql_serv... [H[=] [E3
_?u g sl i | PP | 0 Bk R |5l 2K
I EE i o] [Internet value [Internet Label [
kI o 0 Ho

| | |2 1 es

L3

e
a =

29

Getting Data into SPSS

Figure 3-3
Active dataset in SPSS
B “Untitled3 [] - SPSS Data Editor . |1=1E
File Edit Wiew Data Transform Analvee Graphs Utliies Add-ons Window Help
13:1D
Do | Irternet | Internet Label | war | war a
1 1 0/Mo
2 2 0/Mo
3 3 0/Mo
4 4 0/Mo
3 5 1|¥es
B B 1|¥es
7 7 0/Mo
8 g 0/Mo
9 9 g
101 10 0/Mo
11 i
< v \Data View £ variable view f [< >

B FROM SurveyResponses LEFT OUTER JOIN [Value Labels] will include
all records from the table SurveyResponses even if there are no records in the Value
Labels table that meet the matching criteria.

B ON SurveyResponses.Internet = [Value Labels].[Internet
Value] matches records based on the value of the field Internet in the table
SurveyResponses and the value of the field Internet Value in the table Value Labels.

® The resulting active dataset has an Internet Label value of No for all cases with a
value of 0 for Internet and Yes for all cases with a value of 1 for Internet.

m Since the left outer join includes all records from SurveyResponses, there are cases
in the active dataset with values of 8 or 9 for Internet and no value (a blank string)
for Internet Label, since the values of 8 and 9 do not occur in the Internet Value
field in the table Value Labels.

Reading Excel Files

SPSS can read individual Excel worksheets and multiple worksheets in the

same Excel workbook. The basic mechanics of reading Excel files are relatively
straightforward—rows are read as cases and columns are read as variables. However,
reading a typical Excel spreadsheet—where the data may not start in row 1,
column 1—requires a little extra work, and reading multiple worksheets requires

30

Chapter 3

treating the Excel workbook as a database. In both instances, we can use the GET
DATA command to read the data into SPSS.

Reading a “Typical” Worksheet

When reading an individual worksheet, SPSS reads a rectangular area of the worksheet,
and everything in that area must be data related. The first row of the area may or may
not contain variable names (depending on your specifications); the remainder of the
area must contain the data to be read. A typical worksheet, however, may also contain
titles and other information that may not be appropriate for an SPSS data file and may
even cause the data to be read incorrectly if you don’t explicitly specify the range of
cells to read.

Example
Figure 3-4
Typical Excel worksheet
Ed Microsoft Excel - sales.xls [[O] <]
J File Edit Yiew Insert Format Tools Data Window Help Acrobat ;Iiliﬂ
JD@H|§@."& éf:E®|ﬂvﬂv%2ﬁs§l§l|ﬂ.@wo%.@v
B4 ~| =|
A | B | ¢ | 0 [E | F [6 | H [1 [J [T
| 1 Gross Revenue (in thousands) —
Store
| 2 |Humber State Region Housewares Tools Auto Clothing Toys Food Total
| 3 | 191 Midwest | § EraR I3k % 500 % 19§ 50§ 4% 140
EN 104 Ml Midwest | § 37§ 46 | § 49 | 5 30§ 7% 6§ 175
=N 180 MY East § 40 § 33 % 30§ 1M % 9% 123
| 6 | G4 CA Wyest § 26§ 34§ 415 26§ 12§ 10 % 149
| 7 | 186 GA, South § 28 | § 34§ 21 % 16 | MA 5 10 % 109
| 8 | 153 WA, Wyest ¥ 3§ 95 0§ 23 0% 230§ 12§ 4% 155
ER 108 MA East § 25 | § 30§ 18 % 10 % 95 9% 101
| 10 172 OR Wyest ¥ 0% R a0 % 20k 1§ g% 147
| 11 17114 Midwest | § 39 | § 36 | § 93 | % 159§ 1M % 5% 159
|12 178 ME East 5 7% X% EIRE 14§ 14§ 3% 125
| 13 97 AT Wyest § 25 | § 45 | § 275 19§ 7% 3% 129
| 14 | 105 Rl East 5 2008 H 0§ 17 % 100§ g % E $ 87 | —
| 15 107 Wl Midwest | § 23 | § 46 | § 21 % 30§ 12§ 5% 137
| 16 | Total $ 394§ 444§ 434 5 263 § 119§ 82 § 1736
17 hd
4 | 4[» [»} Gross Revenue / Location £ Tools £ Auto / |« | JJJ
Ready Calculate | [4

To read this spreadsheet without the title row or total row and column:

*readexcel.sps.
GET DATA

31

Getting Data into SPSS

/TYPE=XLS
/FILE="'c:\examples\data\sales.xls'
/SHEET=NAME 'Gross Revenue'
/CELLRANGE=RANGE 'A2:I15"'
/READNAMES=0n

m The TYPE subcommand identifies the file type as Excel, version 5 or later. (For
earlier versions, use GET TRANSLATE.)

® The SHEET subcommand identifies which worksheet of the workbook to read.
Instead of the NAME keyword, you could use the INDEX keyword and an integer
value indicating the sheet location in the workbook. Without this subcommand,
the first worksheet is read.

B The CELLRANGE subcommand indicates that SPSS should start reading at column
A, row 2, and read through column 7, row 15.

m The READNAMES subcommand indicates that the first row of the specified range
contains column labels to be used as variable names.

Figure 3-5
Excel worksheet read into SPSS
B *Untitled10 [] - SPSS Data Editor =)<
File Edit Wiew Data Transform Analyze Graphs Utilities Add-ons Window Help
16 : StoreMumber
StoreNumher| State| Region |H0usewares| Tools | Auto | Clothing | Toys | Food | ~
1 119/IL Mlichwee st 527 $36 $a0 §158 %5 54
2 104 |MI Mlichwe st $a7 FEL] F49 §30 57 4}
3 180 | MY East $40 . $33 $30 511 $9
4 B4|CA |West 526 $34 F41 $26 512 $10
5 186|GA | South 528 §34 521 F16 | MA $10
B 153 WA |West 5§38 $55 $23 §23 512 54
7 108 |MA | East 525 $30 §18 $10/%9 $9
8 172|/0R |West 524 527 $a0 522511 =]
9 171 |1A Mlichwe st $39 §36 $a3 15511 fa)
10 178/ME | East §37 §26 §31 §14 514 53
11 97 |AL West 525 §45 27 #1957 53
12 105|RI East 520 §26 §17 $10 %8 5]
13 107 Wl Mlichwee st 523 $46 521 $30 512]
14
15 [
< » '\ Data View £ Variable View f |< >

m The Excel column label Store Number is automatically converted to the SPSS
variable name StoreNumber, since variable names cannot contain spaces. The
original column label is retained as the variable label.

32

Chapter 3

m The original data type from Excel is preserved whenever possible, but since data
type is determined at the individual cell level in Excel and at the column (variable)
level in SPSS, this isn’t always possible.

® When SPSS encounters mixed data types in the same column, the variable is

assigned the string data type; so, the variable Toys in this example is assigned
the string data type.

READNAMES Subcommand

The READNAMES subcommand tells SPSS to treat the first row of the spreadsheet or
specified range as either variable names (ON) or data (OFF). This subcommand will

always affect the way the Excel spreadsheet is read, even when it isn’t specified, since
the default setting is ON.

m With READNAMES=0N (or in the absence of this subcommand), if the first row
contains data instead of column headings, SPSS will attempt to read the cells in
that row as variable names instead of as data—alphanumeric values will be used

to create variable names, numeric values will be ignored, and default variable
names will be assigned.

® With READNAMES=0FF, if the first row does, in fact, contain column headings or
other alphanumeric text, then those column headings will be read as data values,
and all of the variables will be assigned the string data type.

Reading Multiple Worksheets

An Excel file (workbook) can contain multiple worksheets, and you can read multiple
worksheets from the same workbook by treating the Excel file as a database. This
requires an ODBC driver for Excel.

33

Getting Data into SPSS

Figure 3-6
Multiple worksheets in same workbook
A | B | ¢ | D I ET
1 |Store Murnber State Region | City
2 | NN Midwest | Chicago
3] 104 MI A | B c | o | ET
4] 180 MY
5 G4 Cca 1 |Stare Number Power Hand Accessories
B | 186 GA |2 18) 5 1
7] 153 wa |3 | 104 B A | B | c | D E
8 108 a4 | 180 [
g | 17200 | & G4 g 1 |Store Mumber Tires Batteries | Gizmos Dohickey
10 17114 B | 186 5.2 B4 1 7 4
1| 176/ ME _7 | 153 B3 97 9 2 2
1z w7 AZ B 108 5.4 104 7 g 4
13 105R 9| 172 5.8 105 5 8 3
14 107 vyl 10 171 106 107 7 2 2
ac | 11 178 E 7 108 1 3 4
44 : : » Location g 17| o7 BE 119 3 = 4
EE 105 5.9 153 7 5 1
14 | 107 510 171 2 3 4 | |
I DI Location), Tools 172 3 6 !
12 178 10 7 1
13 180 4 g 4
14 186 g 3 3

18
M 4[» [M[{ Location £ Took s Auto /|4 | |

r

When reading multiple worksheets, you lose some of the flexibility available for

reading individual worksheets:

B You cannot specify cell ranges.

®m The first non-empty row of each worksheet should contain column labels that

will be used as variable names.

B Only basic data types—string and numeric—are preserved, and string variables
may be set to an arbitrarily long width.

Example

In this example, the first worksheet contains information about store location, and the
second and third contain information for different departments. All three contain a
column, Store Number, that uniquely identifies each store, so, the information in the
three sheets can be merged correctly regardless of the order in which the stores are

listed on each worksheet.

*readexcel2.sps.

34

Chapter 3

GET DATA

/TYPE=0ODBC
/CONNECT=
'DSN=Excel Files;DBQ=c:\examples\data\sales.xls;"' +
'DriverId=790;MaxBufferSize=2048; PageTimeout=5;"
/SQL =
'SELECT Location$.[Store Number], State, Region, City,'
' Power, Hand, Accessories,'
Tires, Batteries, Gizmos, Dohickeys'
FROM [Location$], [Tools$], [Auto$]'
WHERE [ToolsS$].[Store Number]=[Location$].[Store Number]'
AND [Auto$].[Store Number]=[Location$].[Store Number]'.

If these commands look like random characters scattered on the page to you, try
using the Database Wizard (File menu, Open Database) and, in the last step, paste
the commands into a syntax window.

Even if you are familiar with SQL statements, you may want to use the Database
Wizard the first time to generate the proper CONNECT string.

The SELECT statement specifies the columns to read from each worksheet, as
identified by the column headings. Since all three worksheets have a column
labeled Store Number, the specific worksheet from which to read this column
is also included.

If the column headings can’t be used as variable names, you can either let SPSS
automatically create valid variable names or use the AS keyword followed by a
valid variable name. In this example, Store Number is not a valid SPSS variable
name; so, a variable name of StoreNumber is automatically created, and the
original column heading is used as the variable label.

The FrROM clause identifies the worksheets to read.

The WHERE clause indicates that the data should be merged by matching the values
of the column Store Number in the three worksheets.

35

Getting Data into SPSS

Figure 3-7
Merged worksheets in SPSS
] “Untitled8 [] - SPSS Data Editor (=JIO)E=
File Edit “iew Data Transform Analyze Graphs Utlities Add-ons Window Help
18 : StoreMumber
StnreNumber| State | Region | City | Power | Hand | ALC A
1 54.00 |CA West Los Angeles g.00 2.00
2 97.00 AL WWast Tucson 9.00 2.00
3 104.00 | kI Mlichwe st Dietrait 5.00 4.00
4 105.00 |RI East Providence 5.00 5.00
5 107.00 W Mlichwe st Madison B.00 3.00
B 108.00 | hA East Boston 5.00 2.00
7 119.00 1L Michwe st Chicago 9.00 5.00
g 153.00 VWA West Seattle 5.00 4.00
&l 171.00 |14 Mlicwe 5t Des Moines 10.00 4.00
10 172.00 OR WWest Eugene 5.00 3.00
11 175.00 | ME East Bangor B.00 2.00
12 180.00 MY East Albany . . -
4 v \DataView £ variable view f |< >]
SPS5S Processar is ready

Reading Text Data Files

A text data file is simply a text file that contains data. Text data files fall into two
broad categories:

m Simple text data files, in which all variables are recorded in the same order for all
cases, and all cases contain the same variables. This is basically how all data files
appear once they are read into SPSS.

® Complex text data files, including files in which the order of variables may vary
between cases and hierarchical or nested data files in which some records contain
variables with values that apply to one or more cases contained on subsequent
records that contain a different set of variables (for example, city, state, and street
address on one record and name, age, and gender of each household member
on subsequent records).

Text data files can be further subdivided into two more categories:

m Delimited. Spaces, commas, tabs, or other characters are used to separate variables.
The variables are recorded in the same order for each case but not necessarily in
the same column locations. This is also referred to as freefield format. Some

36

Chapter 3

applications export text data in comma-separated values (CSV) format; this is a
delimited format.

m Fixed width. Each variable is recorded in the same column location on the same
line (record) for each case in the data file. No delimiter is required between values.
In fact, in many text data files generated by computer programs, data values may
appear to run together without even spaces separating them. The column location
determines which variable is being read.

Complex data files are typically also fixed-width format data files.

Simple Text Data Files

In most cases, the Text Wizard (File menu, Read Text Data) provides all of the
functionality that you need to read simple text data files. You can preview the original
text data file and resulting SPSS data file as you make your choices in the wizard,
and you can paste the command syntax equivalent of your choices into a command
syntax window at the last step.

Two commands are available for reading text data files: GET DATA and DATA
LIST. In many cases, they provide the same functionality, and the choice of one versus
the other is a matter of personal preference. In some instances, however, you may need
to take advantage of features in one command that aren’t available in the other.

GET DATA

Use GET DATA instead of DATA LIST if:
m The file is in CSV format.

m The text data file is very large.

DATA LIST

Use DATA LIST instead of GET DATA if:

m The text data is “inline” data contained in a command syntax file using BEGIN
DATA-END DATA.

B The file has a complex structure, such as a mixed or hierarchical structure. For
more information, see Reading Complex Text Data Files on p. 48.

B You want to use the TO keyword to define a large number of sequential variable
names (for example, varl TO var1000).

37

Getting Data into SPSS

Many examples in other chapters use DATA LIST to define sample data simply
because it supports the use of inline data contained in the command syntax file rather
than in an external data file, making the examples self-contained and requiring no
additional files to work.

Delimited Text Data

In a simple delimited (or “freefield”) text data file, the absolute position of each
variable isn’t important; only the relative position matters. Variables should be
recorded in the same order for each case, but the actual column locations aren’t
relevant. More than one case can appear on the same record, and some records can
span multiple records, while others do not.

Example

One of the advantages of delimited text data files is that they don’t require a great deal
of structure. The sample data file, simple delimited.txt, looks like this:

o
o
oWy
NN
=
[
[REN
RN
P
NN
[GEN)
= Hh
S
[EEN)

The DATA LIST command to read the data file is:

*simple_delimited.sps.
DATA LIST FREE

FILE = 'c:\examples\data\simple_delimited.txt'
/id (F3) sex (Al) age (F2) opinionl TO opinion5 (5F).
EXECUTE.

B FREE indicates that the text data file is a delimited file, in which only the order of
variables matters. By default, commas and spaces are read as delimiters between
data values. In this example, all of the data values are separated by spaces.

m Eight variables are defined, so after reading eight values, the next value is read
as the first variable for the next case, even if it’s on the same line. If the end of a
record is reached before eight values have been read for the current case, the
first value on the next line is read as the next value for the current case. In this
example, four cases are contained on three records.

38

Chapter 3

m [f all of the variables were simple numeric variables, you wouldn’t need to specify
the format for any of them, but if there are any variables for which you need to
specify the format, any preceding variables also need format specifications. Since
you need to specify a string format for sex, you also need to specify a format for id.

®m In this example, you don’t need to specify formats for any of the numeric variables
that appear after the string variable, but the default numeric format is F8.2, which
means that values are displayed with two decimals even if the actual values are
integers. (F2) specifies an integer with a maximum of two digits, and (5F)
specifies five integers, each containing a single digit.

The “defined format for all preceding variables” rule can be quite cumbersome,
particularly if you have a large number of simple numeric variables interspersed with a
few string variables or other variables that require format specifications. You can use a
shortcut to get around this rule:

DATA LIST FREE
FILE = 'c:\examples\data\simple_delimited.txt'
/id * sex (Al) age opinionl TO opinion5.

The asterisk indicates that all preceding variables should be read in the default numeric
format (F8.2). In this example, it doesn’t save much over simply defining a format
for the first variable, but if sex were the last variable instead of the second, it could

be useful.

Example

One of the drawbacks of DATA LIST FREE is that if a single value for a single case
is accidently missed in data entry, all subsequent cases will be read incorrectly, since
values are read sequentially from the beginning of the file to the end regardless of what
line each value is recorded on. For delimited files in which each case is recorded on a
separate line, you can use DATA LIST LIST, which will limit problems caused by
this type of data entry error to the current case.

The data file, delimited list.txt, contains one case that has only seven values
recorded, whereas all of the others have eight:

00l m=28 12212
002 £29 21212
003 £ 45 3 2 4 5

128 m 17 1 1 1 9 4

39

Getting Data into SPSS

The bATA LIST command to read the file is:

*delimited_list.sps.

DATA LIST LIST
FILE='c:\examples\data\delimited_list.txt'
/id(F3) sex (Al) age opinionl TO opinion5 (6F1).

EXECUTE.
Figure 3-8
Text data file read with DATA LIST LIST
%] “Untitled4 [] - SPSS Data Editor (=Ja)Es
File Edit “iew [Data Transform Analvze Graphs Utlities Add-ons Window Help
g:id Wisible:
id | sex | age | opiniont | opinion2 | opinion3 | opiniond | opinions | A
1 1|m 28 1 2 2 1 2
2 21 29 2 1 2 1 2
E 3|t 45 3 2 4 5 .
4] 128 |m 17 1 1 1 9 4
&
5
7 v
4/ \Data View £ Wariable Wigw |< >

m Eight variables are defined, so eight values are expected on each line.

B The third case, however, has only seven values recorded. The first seven values
are read as the values for the first seven defined variables. The eighth variable
is assigned the system-missing value.

You don’t know which variable for the third case is actually missing. In this example,
it could be any variable after the second variable (since that’s the only string variable,
and an appropriate string value was read), making all of the remaining values for
that case suspect; so, a warning message is issued whenever a case doesn’t contain
enough data values:

>Warning # 1116

>Under LIST input, insufficient data were contained on one record to
>fulfill the variable list.

>Remaining numeric variables have been set to the system-missing
>value and string variables have been set to blanks.

>Command line: 6 Current case: 3 Current splitfile group: 1

40

Chapter 3

CSV Delimited Text Files

A CSV file uses commas to separate data values and encloses values that include
commas in quotation marks. Many applications export text data in this format. To read
CSV files correctly, you need to use the GET DATA command.

Example

The file CSV _file.csv was exported from Microsoft Excel:

ID,Name, Gender,Date Hired, Department
1,"Foster, Chantal",f,10/29/1998,1
"Healy, Jonathan",m,3/1/1992,3
"Walter, Wendy",f,1/23/1995,2

2
3
4,"0liver, Kendall",f,10/28/2003,2

This data file contains variable descriptions on the first line and a combination of string
and numeric data values for each case on subsequent lines, including string values that
contain commas. The GET DATA command syntax to read this file is:

*delimited_csv.sps.
GET DATA /TYPE = TXT

/FILE = 'C:\examples\data\CSV_file.csv'
/DELIMITERS = ","

/QUALIFIER = '"'

/ARRANGEMENT = DELIMITED

/FIRSTCASE = 2

/VARIABLES = ID F3 Name Al5 Gender Al

Date_Hired ADATE10 Department F1.

B DELIMITERS = ", " specifies the comma as the delimiter between values.

B QUALIFIER = '"' specifies that values that contain commas are enclosed in
double quotes so that the embedded commas won’t be interpreted as delimiters.

B FIRSTCASE = 2 skips the top line that contains the variable descriptions;
otherwise, this line would be read as the first case.

B ADATE10 specifies that the variable Date Hired is a date variable of the general
format mm/dd/yyyy. For more information, see Reading Different Types of Text
Data on p. 46.

Note: The command syntax in this example was adapted from the command syntax
generated by the Text Wizard (File menu, Read Text Data), which automatically
generated valid SPSS variable names from the information on the first line of the
data file.

41

Getting Data into SPSS

Fixed-Width Text Data

In a fixed-width data file, variables start and end in the same column locations for
each case. No delimiters are required between values, and there is often no space
between the end of one value and the start of the next. For fixed-width data files, the
command that reads the data file (GET DATA or DATA LIST) contains information
on the column location and/or width of each variable.

Example

In the simplest type of fixed-width text data file, each case is contained on a single line
(record) in the file. In this example, the text data file simple_fixed.txt looks like this:

001 m 28 12212
002 £ 29 21212
003 £ 45 32145
128 m 17 11194

Using DATA LIST, the command syntax to read the file is:

*simple_fixed.sps.
DATA LIST FIXED
FILE='c:\examples\data\simple_fixed.txt'
/id 1-3 sex 5 (A) age 7-8 opinionl TO opinion5 10-14.
EXECUTE.

m The keyword FIXED is included in this example, but since it is the default format,
it can be omitted.

m The forward slash before the variable id separates the variable definitions from the
rest of the command specifications (unlike other commands where subcommands
are separated by forward slashes). The forward slash actually denotes the start of
each record that will be read, but in this case there is only one record per case.

m The variable id is located in columns 1 through 3. Since no format is specified, the
standard numeric format is assumed.

m The variable sex is found in column 5. The format (2) indicates that this is a string
variable, with values that contain something other than numbers.

The numeric variable age is in columns 7 and 8.

opinionl TO opinion5 10-14 defines five numeric variables, with each
variable occupying a single column: opinionl in column 10, opinion2 in column
11, and so on.

42

Chapter 3

You could define the same data file using variable width instead of column locations:

*simple_fixed_alt.sps.

DATA LIST FIXED
FILE='c:\examples\data\simple_fixed.txt'
/id (F3, 1X) sex (Al, 1X) age (F2, 1X)

opinionl TO opinion5 (5F1).

EXECUTE.

B id (F3, 1X) indicates that the variable id is in the first three column positions,
and the next column position (column 4) should be skipped.

m Each variable is assumed to start in the next sequential column position; so, sex
is read from column 5.

Figure 3-9
Fixed-width text data file displayed in Data Editor
& *Untitled4 [] - SPSS Data Editor m|[=)
File Edit “iew [Data Transform Analvze Graphs Utilities Add-ons Window Help
g:id Visible:
id | sex | age | opiniont | opinion2 | opinion3 | opiniond | opinions | A
1 1|m 28 1 2 2 1 2
2 2|f 29 2 1 2 1 2
E 3|t 45 3 2 4 5 .
4] 128 |m 17 1 1 1 9 4
g
5
7 v
| v |\Data View £ variable Wiew f < »
Example

Reading the same file with GET DATA, the command syntax would be:

*simple_fixed_getdata.sps.

GET DATA /TYPE = TXT
/FILE = 'C:\examples\data\simple_fixed.txt'
/ARRANGEMENT = FIXED
/VARIABLES =/1 id 0-2 F3 sex 4-4 Al age 6-7 F2
opinionl 9-9 F opinion2 10-10 F opinion3 11-11 F
opinion4 12-12 F opinion5 13-13 F.

B The first column is column O (in contrast to DATA LIST, in which the first column
is column 1).

43

Getting Data into SPSS

m There is no default data type. You must explicitly specify the data type for all
variables.

B You must specify both a start and an end column position for each variable, even if
the variable occupies only a single column (for example, sex 4-4).

m All variables must be explicitly specified; you cannot use the keyword TO to define
a range of variables.

Reading Selected Portions of a Fixed-Width File

With fixed-format text data files, you can read all or part of each record and/or skip
entire records.

Example

In this example, each case takes two lines (records), and the first line of the file should
be skipped because it doesn’t contain data. The data file, skip_first fixed.txt, looks
like this:

Employee age, department, and salary information
John Smith

26 2 40000

Joan Allen

32 3 48000

Bill Murray

45 3 50000

The DATA LIST command syntax to read the file is:

*skip_first_fixed.sps.
DATA LIST FIXED
FILE = 'c:\examples\data\skip_first_fixed.txt'
RECORDS=2
SKIP=1
/name 1-20 (&)
/age 1-2 dept 4 salary 6-10.
EXECUTE.

m The RECORDS subcommand indicates that there are two lines per case.

B The SKIP subcommand indicates that the first line of the file should not be
included.

44

Chapter 3
m The first forward slash indicates the start of the list of variables contained on the
first record for each case. The only variable on the first record is the string variable
name.
m The second forward slash indicates the start of the variables contained on the
second record for each case.
Figure 3-10
Fixed-width, multiple-record text data file displayed in Data Editor
&) *Untitleds [] - SPSS Data Editor =2
File Edit “iew Data Transform Analyze Graphs Utlities Add-ons Window Help
12 name
name | age | dept | salary | var var A
1[Jahn Srith 26 2 40000
2|Joan Allen 32 3 48000
3| Bill Murray 45 3 50000
4
5 W
|/ v |\ Data View £ variable view f | »
Example

With fixed-width text data files, you can easily read selected portions of the data. For

example, using the skip first fixed.txt data file from the above example, you could
read just the age and salary information.

*selected_vars_fixed.sps.

DATA LIST FIXED

FILE = 'c:\examples\data\skip_first_ fixed.txt'
RECORDS=2
SKIP=1
/2 age 1-2 salary 6-10.

EXECUTE.

B As in the previous example, the command specifies that there are two records per
case and that the first line in the file should not be read.

45

Getting Data into SPSS

m /2 indicates that variables should be read from the second record for each case.
Since this is the only list of variables defined, the information on the first record for
each case is ignored, and the employee’s name is not included in the data to be read.

m The variables age and salary are read exactly as before, but no information is read
from columns 3-5 between those two variables because the command does not
define a variable in that space—so the department information is not included
in the data to be read.

DATA LIST FIXED and Implied Decimals

If you specify a number of decimals for a numeric format with DATA LIST FIXED
and some data values for that variable do not contain decimal indicators, those values
are assumed to contain implied decimals.

Example

*implied_decimals.sps.

DATA LIST FIXED /varl (F5.2).
BEGIN DATA

123

123.0

1234

123.4

end data.

m The values of 123 and 1234 will be read as containing two implied decimals
positions, resulting in values of 1.23 and 12.34.

® The values of 123.0 and 123.4, however, contain explicit decimal indicators,
resulting in values of 123.0 and 123.4.

DATA LIST FREE (and LIST) and GET DATA /TYPE=TEXT do nof read implied
decimals; so a value of 123 with a format of F5.2 will be read as 123.

Text Data Files with Very Wide Records

Some machine-generated text data files with a large number of variables may
have a single, very wide record for each case. If the record width exceeds 8,192
columns/characters, you need to specify the record length with the FILE HANDLE
command before reading the data file.

46

Chapter 3

*wide_file.sps.
*Read text data file with record length of 10,000.
*This command will stop at column 8,192.
DATA LIST FIXED
FILE='c:\examples\data\wide_file.txt"
/varl TO varl1l000 (1000F10).

EXECUTE.
*Define record length first.
FILE HANDLE wide_file NAME = 'c:\examples\data\wide_file.txt'

/MODE = CHARACTER /LRECL = 10000.
DATA LIST FIXED

FILE = wide_file

/varl TO varl1l000 (1000F10).
EXECUTE.

m Each record in the data file contains 1,000 10-digit values, for a total record length
of 10,000 characters.

® The first DATA LIST command will read only the first 819 values (8,190
characters), and the remaining variables will be set to the system-missing value. A
warning message is issued for each variable that is set to system-missing, which in
this example means 181 warning messages.

B FILE HANDLE assigns a “handle” of wide_file to the data file wide file.txt.
The LRECL subcommand specifies that each record is 10,000 characters wide.

The FILE subcommand on the second DATA LIST command refers to the file
handle wide_file instead of the actual filename, and all 1,000 variables are read
correctly.

Reading Different Types of Text Data

SPSS can read text data recorded in a wide variety of formats. Some of the more
common formats are listed in the following table:

Type Example Format
specification
Numeric 123 F3
123.45 F6.2
Period as decimal indicator, comma as | 12,345 COMMAG6
thousands separator 12345 COMMA7 1
Comma as decimal indicator, period as | 123,4 DOT6

thousands separator 1.234,5 DOT7.1

47

Getting Data into SPSS

Type Example Format
specification
Dollar $12,345 DOLLAR?7
$12,234.50 DOLLARS9.2
String (alphanumeric) Female A6
International date 28-OCT-1986 DATE11
American date 10/28/1986 ADATEI10
Date and time 28 October, 1986 23:56 DATETIME22

For more information on date and time formats, see “Date and Time” in the
“Universals” section of the SPSS Command Syntax Reference. For a complete list of
data formats supported by SPSS, see “Variables” in the “Universals” section of the
SPSS Command Syntax Reference.

Example

*delimited_formats.sps.
DATA LIST LIST (" ")
/numericVar (F4) dotVar (DOT7.1) stringVar (a4) dateVar (DATE11l).
BEGIN DATA
1 2 abc 28/10/03
111 2.222,2 abcd 28-0CT-2003
111.11 222.222,222 abcdefg 28-0October-2003

END DATA.
Figure 3-11
Different data types displayed in Data Editor
& *Untitled7 [] - SPSS Data Editor = J=)&d
File Edit Wiew Data Transform Analyze Graphs Ublities Add-ons Window Help
10 numericyar
numericvar | dotvar | stringvar | dateVar | wvar A
1 1 20|abe 28-0CT-2003
2 1 2222 2 |abed 28-0CT-2003
3 1M 222222 2 |abed 28-0CT-2003
4
5 w
1 » \Data View £ variahle View f | >

m All of the numeric and date values are read correctly even if the actual values
exceed the maximum width (number of digits and characters) defined for the
variables.

48

Chapter 3

m Although the third case appears to have a truncated value for numericVar, the
entire value of 111.11 is stored internally. Since the defined format is also used as
the display format, and (F4) defines a format with no decimals, 111 is displayed
instead of the full value. Values are not actually truncated for display; they are
rounded. A value of 111.99 would display as 112.

B The dateVar value of 28-October-2003 is displayed as 28-OCT-2003 to fit the
defined width of 11 digits/characters.

®m For string variables, the defined width is more critical than with numeric variables.
Any string value that exceeds the defined width is truncated, so only the first four
characters for stringVar in the third case are read. Warning messages are displayed
in the log for any strings that exceed the defined width.

Reading Complex Text Data Files

“Complex” text data files come in a variety of flavors, including:

m Mixed files in which the order of variables isn’t necessarily the same for all records
and/or some record types should be skipped entirely.

® Grouped files in which there are multiple records for each case that need to be
grouped together.

m Nested files in which record types are related to each other hierarchically.

Mixed Files

A mixed file is one in which the order of variables may differ for some records and/or

some records may contain entirely different variables or information that shouldn’t
be read.

Example

In this example, there are two record types that should be read: one in which srate
appears before city and one in which city appears before state. There is also an
additional record type that shouldn’t be read.

*mixed_file.sps.
FILE TYPE MIXED RECORD = 1-2.
- RECORD TYPE 1.
- DATA LIST FIXED
/state 4-5 (A) city 7-17 (A) population 19-26 (F).

49

Getting Data into SPSS

- RECORD TYPE 2.
- DATA LIST FIXED
/city 4-14 (A) state 16-17 (A) population 19-26 (F).
END FILE TYPE.
BEGIN DATA

01 TX Dallas 3280310
01 IL Chicago 8008507
02 Ancorage AK 257808
99 What am I doing here?
02 Casper WY 63157
01 WI Madison 428563
END DATA.

B The commands that define how to read the data are all contained within the FILE
TYPE-END FILE TYPE structure.

m MIXED identifies the type of data file.

B RECORD = 1-2 indicates that the record type identifier appears in the first two
columns of each record.

m Each DATA LIST command reads only records with the identifier value specified
on the preceding RECORD TYPE command. So if the value in the first two columns
of the record is 1 (or 01), state comes before city, and if the value is 2, city comes
before state.

B The record with the value 99 in the first two columns is not read, since there are no
corresponding RECORD TYPE and DATA LIST commands.

You can also include a variable that contains the record identifier value by including a
variable name on the RECORD subcommand of the FILE TYPE command, as in:

FILE TYPE MIXED /RECORD = recID 1-2.

You can also specify the format for the identifier value, using the same type of format
specifications as the DATA LIST command. For example, if the value is a string
instead of a simple numeric value:

FILE TYPE MIXED /RECORD = recID 1-2 (A).

Grouped Files

In a grouped file, there are multiple records for each case that should be grouped
together based on a unique case identifier. Each case usually has one record of each
type. All records for a single case must be together in the file.

50

Chapter 3

Example

In this example, there are three records for each case. Each record contains a value
that identifies the case, a value that identifies the record type, and a grade or score for
a different course.

* grouped_file.sps.

* A case 1is made up of all record types.
FILE TYPE GROUPED RECORD=6 CASE=student 1-4.
RECORD TYPE 1.

- DATA LIST /english 8-9 (A).

RECORD TYPE 2.

- DATA LIST /reading 8-10.

RECORD TYPE 3.

- DATA LIST /math 8-10.

END FILE TYPE.

BEGIN DATA

0001 1 B+
0001 2 74
0001 3 83
0002 1 A
0002 3 71
0002 2 100
0003 1 B-
0003 2 88
0003 3 81
0004 1 ¢
0004 2 94
0004 3 91
END DATA.

B The commands that define how to read the data are all contained within the FILE
TYPE-END FILE TYPE structure.

B GROUPED identifies the type of data file.

B RECORD=6 indicates that the record type identifier appears in column 6 of each
record.

B CASE=student 1-4 indicates that the unique case identifier appears in the first
four columns and assigns that value to the variable student in the active dataset.

B The three RECORD TYPE and subsequent DATA LIST commands determine how
each record is read, based on the value in column 6 of each record.

51

Getting Data into SPSS

Figure 3-12
Grouped data displayed in Data Editor
% *Untitled8 [] - SPSS Data Editor -Jo/Ed
File Edit “iew Data Transform Analyze Graphs Utilities Add-ons Window Help
9 student
student | english | reading | math | war vaw
1 1B+ 74 g3
2 2[A 100 71
3 3|B- 85 a1
4 4/C 4)
5
B
7 L%
< v \Data View £ variable view f < >
Example

In order to read a grouped data file correctly, all records for the same case must be
contiguous in the source text data file. If they are not, you need to sort the data file
before reading it as a grouped data file. You can do this by reading the file as a simple
text data file, sorting it and saving it, and then reading it again as a grouped file.

*grouped_file2.sps.

* Data file is sorted by record type instead of by
identification number.

DATA LIST FIXED
/alldata 1-80 (A) caseid 1-4.

BEGIN DATA

0001 1 B+
0002 1 A
0003 1 B-
0004 1 ¢
0001 2 74
0002 2 100
0003 2 88
0004 2 94
0001 3 83
0002 3 71
0003 3 81
3

0004

END DATA.

SORT CASES BY caseid.

WRITE OUTFILE='c:\temp\tempdata.txt'
/alldata.

EXECUTE.

* read the sorted file.

FILE TYPE GROUPED FILE='c:\temp\tempdata.txt'

52

Chapter 3

RECORD=6 CASE=student 1-4.

- RECORD TYPE 1.

- DATA LIST /english 8-9 (A).
- RECORD TYPE 2.

- DATA LIST /reading 8-10.

- RECORD TYPE 3.

- DATA LIST /math 8-10.

END FILE TYPE.

EXECUTE.

B The first DATA LIST command reads all of the data on each record as a single
string variable.

®m In addition to being part of the string variable spanning the entire record, the first
four columns are read as the variable caseid.

m The data file is then sorted by caseid, and the string variable alldata, containing all
of the data on each record, is written to the text file tempdata.txt.

B The sorted file, fempdata.txt, is then read as a grouped data file, just like the inline
data in the previous example.

Prior to SPSS 13.0, the maximum width of a string variable was 255 characters. So
in earlier releases, for a file with records wider than 255 characters, you would need
to modify the job slightly to read and write multiple string variables. For example, if
the record width is 1,200:

DATA LIST FIXED
/stringl to string6 1-1200 (A) caseid 1-4.

This would read the file as six 200-character string variables.

SPSS can now handle much longer strings in a single variable: 32,767 bytes. So
this workaround is unnecessary for SPSS 13.0 or later. (If the record length exceeds
8,192 bytes, you need to use the FILE HANDLE command to specify the record length.
See the SPSS Command Syntax Reference for more information.)

Nested (Hierarchical) Files

In a nested file, the record types are related to each other hierarchically. The record
types are grouped together by a case identification number that identifies the
highest level—the first record type—of the hierarchy. Usually, the last record type
specified—the lowest level of the hierarchy—defines a case. For example, in a file
containing information on a company’s sales representatives, the records could be

53

Getting Data into SPSS

grouped by sales region. Information from higher record types can be spread to each
case. For example, the sales region information can be spread to the records for each
sales representative in the region.

Example

In this example, sales data for each sales representative are nested within sales regions
(cities), and those regions are nested within years.

*nested_filel.sps.

FILE TYPE NESTED RECORD=1 (A).

- RECORD TYPE 'Y'.

- DATA LIST / Year 3-6.

- RECORD TYPE 'R'.

- DATA LIST / Region 3-13 (A).

- RECORD TYPE 'P'.

- DATA LIST / SalesRep 3-13 (A) Sales 20-23.
END FILE TYPE.

BEGIN DATA

Y 2002
R Chicago
P Jones 900
P Gregory 400
R Baton Rouge
P Rodriguez 300
P Smith 333
P Grau 100
END DATA.
Figure 3-13
Nested data displayed in Data Editor
B *Untitled? [1 - SPSS Data Editor g@ S5
File Edit Wiews Data Transform Analyze Graphs Utilities Add-ons Window Help
|8 : Year |
Year | Region | SalesRep | Sales | war T]
1| 2002 |Chicaga Jones 800 |
2 2002 |Chicago Gregory 400
3 2002 |Baton Rouge Rodriguez 300
4 2002 |Baton Rouge Srnith 333
=3 2002 |Baton Rouge Grau 100
53 ™
|| v |\\Data View A variahle view f <1 [#]]

® The commands that define how to read the data are all contained within the FILE
TYPE-END FILE TYPE structure.

B NESTED identifies the type of data file.

54

Chapter 3

m The value that identifies each record type is a string value in column 1 of each
record.

® The order of the RECORD TYPE and associated DATA LIST commands defines the
nesting hierarchy, with the highest level of the hierarchy specified first. So, 'y
(year) is the highest level, followed by 'R' (region), and finally 'P' (person).

m Eight records are read, but one of those contains year information and two identify
regions; so, the active dataset contains five cases, all with a value of 2002 for Year,
two in the Chicago Region and three in Baton Rouge.

Using INPUT PROGRAM to Read Nested Files

The previous example imposes some strict requirements on the structure of the data.
For example, the value that identifies the record type must be in the same location
on all records, and it must also be the same type of data value (in this example, a
one-character string).

Instead of using a FILE TYPE structure, we can read the same data with an INPUT
PROGRAM, which can provide more control and flexibility.

Example

This first input program reads the same data file as the FILE TYPE NESTED example
and obtains the same results in a different manner.

* nested_inputl.sps.

INPUT PROGRAM.

- DATA LIST FIXED END=#eof /#type 1 (A).
- DO IF #eof.

- END FILE.

- END TF.

- DO IF #type='Y'.

- REREAD.

- DATA LIST /Year 3-6.

- LEAVE Year.

- ELSE IF #type='R'.

- REREAD.

- DATA LIST / Region 3-13 (A).
- LEAVE Region.

- ELSE IF #type='P'.

- REREAD.

- DATA LIST / SalesRep 3-13 (A) Sales 20-23.
- END CASE.

- END IF.

END INPUT PROGRAM.

BEGIN DATA

55

Getting Data into SPSS

Y 2002

R Chicago

P Jones 900

P Gregory 400

R Baton Rouge

P Rodriguez 300

P Smith 333

P Grau 100

END DATA.

B The commands that define how to read the data are all contained within the INPUT
PROGRAM structure.

® The first DATA LIST command reads the temporary variable #fype from the first
column of each record.

B END=#eof creates a temporary variable named #eof that has a value of 0 until the
end of the data file is reached, at which point the value is set to 1.

B DO IF #eof evaluates as true when the value of #eof is set to 1 at the end of the
file, and an END FILE command is issued, which tells the INPUT PROGRAM to
stop reading data. In this example, this isn’t really necessary, since we’re reading
the entire file; however, it will be used later when we want to define an end point
prior to the end of the data file.

® The second DO IF-ELSE IF-END IF structure determines what to do for each
value of #ype.

B REREAD reads the same record again, this time reading either Year, Region, or
SalesRep and Sales, depending on the value of #type.

B LEAVE retains the value(s) of the specified variable(s) when reading the next record.
So the value of Year from the first record is retained when reading Region from
the next record, and both of those values are retained when reading SalesRep and
Sales from the subsequent records in the hierarchy. Thus, the appropriate values of
Year and Region are spread to all of the cases at the lowest level of the hierarchy.

B END CASE marks the end of each case. So, after reading a record with a #ype
value of ' P, the process starts again to create the next case.

Example

In this example, the data file reflects the nested structure by indenting each nested
level; so the values that identify record type do not appear in the same place on each
record. Furthermore, at the lowest level of the hierarchy, the record type identifier is

56

Chapter 3

the last value instead of the first. Here, an INPUT PROGRAM provides the ability to
read a file that cannot be read correctly by FILE TYPE NESTED.

*nested_input2.sps.
INPUT PROGRAM.
- DATA LIST FIXED END=#eof
/#yr 1 (A) #reg 3 (A) #person 25 (A).
- DO IF #eof.
- END FILE.
- END IF.
- DO IF #yr='Y'.
- REREAD.
- DATA LIST /Year 3-6.
- LEAVE Year.
- ELSE IF #reg='R'.
- REREAD.
- DATA LIST / Region 5-15 (A).
- LEAVE Region.
- ELSE IF #person='P'.

- REREAD.
- DATA LIST / SalesRep 7-17 (A) Sales 20-23.
- END CASE.
- END IF.
END INPUT PROGRAM.
BEGIN DATA
Y 2002
R Chicago
Jones 900 P
Gregory 400 P
R Baton Rouge
Rodriguez 300 P
Smith 333 P
Grau 100 P
END DATA.

m This time, the first DATA LIST command reads three temporary variables at
different locations, one for each record type.

B The DO IF-ELSE IF-END IF structure then determines how to read each record
based on the values of #yr, #reg, or #person.

B The remainder of the job is essentially the same as the previous example.

Example

Using the input program, we can also select a random sample of cases from each
region and/or stop reading cases at a specified maximum.

*nested_input3.sps.
INPUT PROGRAM.

57

Getting Data into SPSS

COMPUTE #count=0.
- DATA LIST FIXED END=#eof
/#yr 1 (A) #reg 3(A) #person 25 (A).
- DO IF #eof OR #count = 1000.
- END FILE.
- END IF.
- DO IF #yr='Y'.
- REREAD.
- DATA LIST /Year 3-6.
- LEAVE Year.
- ELSE IF #reg='R'.
- REREAD.
- DATA LIST / Region 5-15 (A).
- LEAVE Region.
- ELSE IF #person='P' AND UNIFORM(1000) < 500.
- REREAD.
- DATA LIST / SalesRep 7-17 (A) Sales 20-23.
- END CASE.
- COMPUTE #count=#count+1.
- END IF.
END INPUT PROGRAM.
BEGIN DATA

Y 2002
R Chicago
Jones 900 P
Gregory 400 P
R Baton Rouge
Rodriguez 300 P
Smith 333 P
Grau 100 P
END DATA.

B COMPUTE #count=0 initializes a case-counter variable.

B ELSE IF #person='P' AND UNIFORM(1000) < 500 will read a random
sample of approximately 50% from each region, since UNTFORM (1000) will
generate a value less than 500 approximately 50% of the time.

B COMPUTE #count=#count+1 increments the case counter by 1 for each case
that is included.

B DO IF #eof OR #count = 1000 will issue an END FILE command if the
case counter reaches 1,000, limiting the total number of cases in the active dataset
to no more than 1,000.

Since the source file must be sorted by year and region, limiting the total number of
cases to 1,000 (or any value) may omit some years or regions within the last year
entirely.

58

Chapter 3
Repeating Data

In a repeating data file structure, multiple cases are constructed from a single record.
Information common to each case on the record may be entered once and then spread
to all of the cases constructed from the record. In this respect, a file with a repeating
data structure is like a hierarchical file, with two levels of information recorded on a
single record rather than on separate record types.

Example

In this example, we read essentially the same information as in the examples of nested
file structures, except now all of the information for each region is stored on a single
record.

*repeating_data.sps.
INPUT PROGRAM.
DATA LIST FIXED
/Year 1-4 Region 6-16 (A) #numrep 19.
REPEATING DATA STARTS=22 /OCCURS=#numrep
/DATA=SalesRep 1-10 (A) Sales 12-14.
END INPUT PROGRAM.
BEGIN DATA

2002 Chicago 2 Jones 900Gregory 400
2002 Baton Rouge 3 Rodriguez 300Smith 333Grau 100
END DATA.

® The commands that define how to read the data are all contained within the INPUT
PROGRAM structure.

® The DATA LIST command defines two variables, Year and Region, that will be
spread across all of the cases read from each record. It also defines a temporary
variable, #numrep.

® On the REPEATING DATA command, STARTS=22 indicates that the case starts
in column 22.

B OCCURS=#numrep uses the value of the temporary variable, #aumrep (defined on
the previous DATA LIST command), to determine how many cases to read from
each record. So, two cases will be read from the first record, and three will be
read from the second.

® The DATA subcommand defines two variables for each case. The column locations
for those variables are relative locations. For the first case, column 22 (specified
on the STARTS subcommand) is read as column 1. For the next case, column 1 is

59

Getting Data into SPSS

the first column after the end of the defined column span for the last variable in the
previous case, which would be column 36 (22+14=36).

The end result is an active dataset that looks remarkably similar to the data file created
from the hierarchical source data file.

Figure 3-14
Repeating data displayed in Data Editor
) *Untitled10 [] - SPSS Data Editor =)
File Edit Wiew Data Transform Analyze Graphs Utilities Add-ons Window Help
11 : Year
Year | Region | SalesRep | Sales | var
1| 2002 |Chicago Jones 800 '
2 2002 |Chicago Gregary 400
3 2002 |Baton Rouge Rodriguez 300
4 2002 |Baton Rouge Smith 333
5 2002 |Baton Rouge Grau 100
B |
7 ~
4 v \DataView £ variable View f <1 [=]]

Reading SAS Data Files

SPSS can read the following types of SAS files:
m SAS long filename, versions 7 through 9
SAS short filenames, versions 7 through 9
SAS version 6 for Windows

SAS version 6 for UNIX

SAS Transport

The basic structure of a SAS data file is very similar to an SPSS data file—rows are
cases (observations), and columns are variables—and reading SAS data files requires
only a single, simple command: GET SAS.

Example

In its simplest form, the GET SAS command has a single subcommand that specifies
the SAS filename.

60

Chapter 3

*get_sas.sps.
GET SAS DATA='C:\examples\data\lgss.sd2'.

m SAS variable names that do not conform to SPSS variable-naming rules are
converted to valid SPSS variable names.

m SAS variable labels specified on the LABEL statement in the DATA step are used as
variable labels in SPSS.

Figure 3-15
SAS data file with variable labels in SPSS
&) “Untitled11 [] - SPSS Data Editor =Jol&d
File Edit “iew Data Transform Analyze Graphs Utlities Add-ons Window Help
Mame Type | Width | Decimals | Label |A
1[AGE Mumeric |2 0 Age of Respondent
2| 3EX Mumeric |1 0 Respondent's Sex
J|EDUC Mumeric |2 0 Highest Year of School Completed
4 INCOMEDRT Mumeric |2 0 Total Farmily Income
SWWRKETAT Mumeric |1 0 Labor Force Status
B|RICHWORK. |[Mumeric |1 0 If Rich, Continue or Stop Working
7| SATJOB Mumeric |1 0 Job or Housework -
« '\ Data View \Variable View / B B 3 >
Example

SAS value formats are similar to SPSS value labels, but SAS value formats are saved
in a separate file; so if you want to use value formats as value labels, you need to use
the FORMATS subcommand to specify the formats file.

*get_sas2.sps.

GET SAS DATA='C:\examples\datalgss.sd2'
FORMATS="'c: \examples\data\GSS_Fmts.sd2"'.
Labels assigned to single values are retained.

Labels assigned to a range of values are ignored.

Labels assigned to the SAS keywords L.OW, HIGH, and OTHER are ignored.

Labels assigned to string variables and non-integer numeric values are ignored.

61

Getting Data into SPSS

Figure 3-16
SAS value formats used as value labels
B “Untitled12 [] - SPSS Data Editor =Jo&d
File Edit Wiew Data Transform Analyze Graphs Uklities Add-ons Window Help
Label | “alues | hissing
1|Age of Respondent {53, Don't know}... MNane
2|Respondent’s Sex {1, Male}... MNane
3| Highest Year of School Completed {57, Mot applicable}... |None
4| Tatal Family Income MNane MNane
5|Labor Force Status 0, MAPYL.. MNane
B|If Rich, Continue or Stop Working {0, NAP]. . MNane
7|Job or Housework {0, Mot applicable}... Nane
Slln fa cocnitives A dull M Kklat amnlicahklal hlmwmn b
< v\ Data View }Variable View / < >

Reading Stata Data Files

GET STATA reads Stata-format data files created by Stata versions 4 through 8. The
only specification is the FILE keyword, which specifies the Stata data file to be read.

Variable names. Stata variable names are converted to SPSS variable names in

case-sensitive form. Stata variable names that are identical except for case are

converted to valid variable names by appending an underscore and a sequential
letter (A, B, C,.., Z, AA, AB, ... etc.).

Variable labels. Stata variable labels are converted to SPSS variable labels.

Value labels. Stata value labels are converted to SPSS value labels, except for Stata
value labels assigned to “extended” missing values.

Missing values. Stata “extended” missing values are converted to system-missing
values.

Date conversion. Stata date format values are converted to SPSS DATE format
(d-m-y) values. Stata “time-series” date format values (weeks, months, quarters,
etc.) are converted to simple numeric (F) format, preserving the original, internal

integer value, which is the number of weeks, months, quarters, etc., since the
start of 1960.

Example

GET STATA FILE='c:\examples\data\statafile.dta'.

Chapter

4

File Operations

You can combine and manipulate data sources in a number of ways, including:

Using multiple data sources
Merging data files
Aggregating data
Weighting data

Changing file structure

Using output as input. For more information, see Using Output as Input with
OMS in Chapter 9 on p. 156.

Working with Multiple Data Sources

Starting with SPSS 14.0, SPSS can have multiple data sources open at the same time.

When you use the dialog boxes and wizards in the graphical user interface to read
data into SPSS, the default behavior is to open each data source in a new Data
Editor window, and any previously open data sources remain open and available
for further use. You can change the active dataset simply by clicking anywhere in
the Data Editor window of the data source that you want to use or by selecting the
Data Editor window for that data source from the Window menu.

In command syntax, the default behavior remains the same as in previous releases:
reading a new data source automatically replaces the active dataset. If you want to
work with multiple datasets using command syntax, you need to use the DATASET
commands.

62

63

File Operations

The DATASET commands (DATASET NAME, DATASET ACTIVATE, DATASET
DECLARE, DATASET COPY, DATASET CLOSE) provide the ability to have multiple
data sources open at the same time and control which open data source is active at any
point in the session. Using defined dataset names, you can then:

Merge data (for example, MATCH FILES, ADD FILES, UPDATE) from multiple
different source types (for example, text data, database, spreadsheet) without
saving each one as an SPSS data file first.

Create new datasets that are subsets of open data sources (for example, males in
one subset, females in another, people under a certain age in another, or original
data in one set and transformed/computed values in another subset).

Copy and paste variables, cases, and/or variable properties between two or more
open data sources in the Data Editor.

Operations

Commands operate on the active dataset. The active dataset is the data source
most recently opened (for example, by commands such as GET DATA, GET
SAS, GET STATA, GET TRANSLATE) or most recently activated by a DATASET
ACTIVATE command.

Variables from one dataset are not available when another dataset is the active
dataset.

Transformations to the active dataset—before or after defining a dataset
name—are preserved with the named dataset during the session, and any pending
transformations to the active dataset are automatically executed whenever a
different data source becomes the active dataset.

Dataset names can be used in most commands that can contain a reference to
an SPSS data file.

Wherever a dataset name, file handle (defined by the FILE HANDLE command),
or filename can be used to refer to an SPSS data file, defined dataset names take
precedence over file handles, which take precedence over filenames. For example,
if filel exists as both a dataset name and a file handle, FILE=filel in the MATCH
FILES command will be interpreted as referring to the dataset named file/, not
the file handle.

Example

*multiple_datasets.sps.

64

Chapter 4

DATA LIST FREE /filelVar.

BEGIN DATA

11 12 13

END DATA.

DATASET NAME filel.

COMPUTE filelVar=MOD(filelVar,10).

DATA LIST FREE /file2Var.

BEGIN DATA

21 22 23

END DATA.

DATASET NAME file2.

*file2 is now the active dataset; so the following
command will generate an error.

FREQUENCIES VARIABLES=filelVar.

*now activate dataset filel and rerun Frequencies.

DATASET ACTIVATE filel.

FREQUENCIES VARIABLES=filelVar.

The first DATASET NAME command assigns a name to the active dataset (the data
defined by the first DATA LIST command). This keeps the dataset open for
subsequent use in the session after other data sources have been opened. Without
this command, the dataset would automatically close when the next command
that reads/opens a data source is run.

The coMPUTE command applies a transformation to a variable in the active
dataset. This transformation will be preserved with the dataset named file/. The
order of the DATASET NAME and COMPUTE commands is not important. Any
transformations to the active dataset, before or after assigning a dataset name, are
preserved with that dataset during the session.

The second DATA LIST command creates a new dataset, which automatically
becomes the active dataset. The subsequent FREQUENCIES command that
specifies a variable in the first dataset will generate an error, because file/ is no
longer the active dataset, and there is no variable named filel Var in the active
dataset.

DATASET ACTIVATE makes filel the active dataset again, and now the
FREQUENCIES command will work.

Example

*dataset_subsets.sps.
DATASET CLOSE ALL.
DATA LIST FREE /gender.
BEGIN DATA
0011011100
END DATA.

65

File Operations

DATASET NAME original.
DATASET COPY males.
DATASET ACTIVATE males.
SELECT IF gender=0.
DATASET ACTIVATE original.
DATASET COPY females.
DATASET ACTIVATE females.
SELECT IF gender=1.
EXECUTE.

m The first DATASET COPY command creates a new dataset, males, that represents
the state of the active dataset at the time it was copied.

B The males dataset is activated and a subset of males is created.
m The original dataset is activated, restoring the cases deleted from the males subset.

® The second DATASET COPY command creates a second copy of the original dataset
with the name females, which is then activated and a subset of females is created.

m Three different versions of the initial data file are now available in the session: the
original version, a version containing only data for males, and a version containing
only data for females.

Figure 4-1
Multiple subsets available in the same session
£ *Untitled9 [original] - SPSS Data Editor x
15 98NCer e iy ntitled10 [males] - SPSS Data Editor B3
__|_gender
N oo
7 oo |15 gender BR wntitted11 [females] - SPSS Data Editor b3
3| 100 | gender |
T4 1m0t 00| e
—] a0 3 o 15 : gender
75 1.00 3 o0 qender ‘ war var var war Yar ~
B
5 1005 ol —= :
— 0|8 3 1.00
— = 4 1.00
7 4
% oo —| 5 1.00
< v \DataVie — o| B
10 | 7]
11 a
4/ v \DataViev g
10
-

11
< » \DataView £ Variable Yiew / B3 >

66

Chapter 4

Merging Data Files

You can merge two or more datasets in several ways:
m Merge datasets with the same cases but different variables.
m Merge datasets with the same variables but different cases.

m Update values in a master data file with values from a transaction file.

Merging Files with the Same Cases but Different Variables

The MATCH FILES command merges two or more data files that contain the same
cases but different variables. For example, demographic data for survey respondents
might be contained in one data file, and survey responses for surveys taken at different
times might be contained in multiple additional data files. The cases are the same
(respondents), but the variables are different (demographic information and survey
responses).

This type of data file merge is similar to joining multiple database tables except that
you are merging multiple SPSS-format data files rather than database tables. For
information on reading multiple database tables with joins, see Reading Multiple
Tables in Chapter 3 on p. 26.

One-to-One Matches

The simplest type of match assumes that there is basically a one-to-one relationship
between cases in the files being merged—for each case in one file, there is a
corresponding case in the other file.

Example

This example merges a data file containing demographic data with another file
containing survey responses for the same cases.

*match_filesl.sps.

*first make sure files are sorted correctly.

GET FILE='C:\examples\data\match_responsel.sav'.

SORT CASES BY id.

DATASET NAME responses.

GET FILE='C:\examples\data\match_demographics.sav'.

SORT CASES BY id.

*now merge the survey responses with the demographic info.

67

File Operations

MATCH FILES /FILE=%*

/FILE=responses
/BY id.

EXECUTE.

DATASET NAME is used to name the first dataset, so it will remain available after
the second dataset is opened.

SORT CASES BY idisused to sort both datasets in the same case order. Cases
are merged sequentially, so both datasets must be sorted in the same order to make
sure that cases are merged correctly.

MATCH FILES merges the two datasets. FILE=* indicates the active dataset (the
demographic dataset).

The BY subcommand matches cases by the value of the ID variable in both datasets.
In this example, this is not technically necessary, since there is a one-to-one
correspondence between cases in the two datasets and the datasets are sorted in
the same case order. However, if the datasets are not sorted in the same order and
no key variable is specified on the BY subcommand, the datasets will be merged
incorrectly with no warnings or error messages; whereas, if a key variable is
specified on the BY subcommand and the datasets are not sorted in the same order
of the key variable, the merge will fail and an appropriate error message will be
displayed. If the datasets contain a common case identifier variable, it is a good
practice to use the BY subcommand.

Any variables with the same name are assumed to contain the same information,
and only the variable from the first dataset specified on the MATCH FILES
command is included in the merged dataset. In this example, the ID variable (id) is
present in both datasets, and the merged dataset contains the values of the variable
from the demographic dataset—which is the first dataset specified on the MATCH
FILES command. (In this case, the values are identical anyway.)

For string variables, variables with the same name must have the same defined
width in both files. If they have different defined widths, an error results and the
command does not run. This includes string variables used as BY variables.

68

Chapter 4

Example

Expanding the previous example, we will merge the same two data files plus a third
data file that contains survey responses from a later date. Three aspects of this third file
warrant special attention:

m The variable names for the survey questions are the same as the variable names
in the survey response data file from the earlier date.

B One of the cases that is present in both the demographic data file and the first
survey response file is missing from the new survey response data file.

® The source file is not an SPSS-format data file; it’s an Excel worksheet.

*match_files2.sps.
GET FILE='C:\examples\data\match_responsel.sav'.
SORT CASES BY id.
DATASET NAME responsel.
GET DATA /TYPE=XLS
/FILE="'c:\examples\data\match_response2.xls'.
SORT CASES BY id.
DATASET NAME response2.
GET FILE='C:\examples\data\match_demographics.sav'.
SORT CASES BY id.
MATCH FILES /FILE=*
/FILE=responsel
/FILE=response?2
/RENAME opinionl=opinionl_2 opinion2=opinion2_2
opinion3=opinion3_2 opinion4=opinion4_2
/BY id.
EXECUTE.

B As before, all of the datasets are sorted by the values of the ID variable.

B MATCH FILES specifies three datasets this time: the active dataset that contains
the demographic information and the two datasets containing survey responses
from two different dates.

B The RENAME command after the FILE subcommand for the second survey response
dataset provides new names for the survey response variables in that dataset.
This is necessary to include these variables in the merged dataset. Otherwise,
they would be excluded because the original variable names are the same as the
variable names in the first survey response dataset.

69

File Operations

m The BY subcommand is necessary in this example because one case (id = 184)
is missing from the second survey response dataset, and without using the BY
variable to match cases, the datasets would be merged incorrectly.

m All cases are included in the merged dataset. The case missing from the second
survey response dataset is assigned the system-missing value for the variables
from that dataset (opinionl 2—opinion4 2).

Figure 4-2
Merged files displayed in Data Editor

] *match_demographics.sav [] - SPSS Data Editor E]@
File Edit Wiew Data Transform Analyze Graphs Utiities Add-ons Window Help

13:0d Wisible: 13 of 13 Var
id ‘Age

Gender |Income_|

category|

Religion| apinion?| opinion2| opinion3| opiniond| opinionl_2

meion2_2‘ opinion3_2 ‘ opiniond_2 ‘.\

150| 85 'm
170| 29 f
184| 42 f
216 38 F

1 3 2
2

3

4

51227 B2|m

5

7

8

2

1NN

228 24 f
272 25|
2939 800 f
9]333| 0 m

10]385| 23 m

11]391) 58 m
4 v % DataView A Variable View f 3

— kx| b 00| W) e D] | L] b | W
[S T L R N
| w|m| e e raw| w) ka|m
— | w| = o] w o]k k|
0| b | ke =] | L) k| L
L ba| L | W] = =] | —
) | b WO R e L] D
r | = W] e e] Wl
0| L Wt R e e

Mol o] e e] =

Table Lookup (One-to-Many) Matches

A table lookup file is a file in which data for each case can be applied to multiple cases
in the other data file(s). For example, if one file contains information on individual
family members (such as gender, age, education) and the other file contains overall
family information (such as total income, family size, location), you can use the file of
family data as a table lookup file and apply the common family data to each individual
family member in the merged data file.

Specifying a file with the TABLE subcommand instead of the FILE subcommand
indicates that the file is a table lookup file. The following example merges two text
files, but they could be any combination of data sources that you can read into SPSS.
For information on reading different types of data into SPSS, see Chapter 3 on p. 22.

*match_table_lookup.sps.
DATA LIST LIST
FILE='c:\examples\data\family data.txt'
/household_id total_income family_ size region.
SORT CASES BY household_id.

70

Chapter 4

DATASET NAME household.

DATA LIST LIST
FILE='c:\examples\data\individual_data.txt'
/household_id indv_id age gender education.

SORT CASE BY household_id.

DATASET NAME individual.

MATCH FILES TABLE='household'
/FILE="'individual'

/BY household_id.

EXECUTE.

Merging Files with the Same Variables but Different Cases

The ADD FILES command merges two or more data files that contain the same
variables but different cases. For example, regional revenue for two different company
divisions might be stored in two separate data files. Both files have the same variables
(region indicator and revenue) but different cases (each region for each division is a
case).

Example

ADD FILES relies on variable names to determine which variables represent the
“same” variables in the data files being merged. In the simplest example, all of the files
contain the same set of variables, using the exact same variable names, and all you
need to do is specify the files to be merged. In this example, the two files both contain
the same two variables, with the same two variable names: Region and Revenue.

*add_filesl.sps.

ADD FILES
/FILE = 'c:\examples\data\catalog.sav'
/FILE =' c:\examples\data\retail.sav'
/IN = Division.
EXECUTE.

VALUE LABELS Division 0 'Catalog' 1 'Retail Store'.

71

File Operations

Figure 4-3
Cases from one file added to another file
B “Untitled2 [] - SPSS Data Editor (=] 5
File Edit Wiew Data Transform Analyze Graphs Utliies Add-ons Window Help
10 Region
Region | Revenue | Division | var war s
1 1 §1,234 567 Catalog
2 2 §3 456 789 Catalog
3 3 §2 345 G758 Catalog
4 4 5 E78 910 Catalog
5 1 $5 212457 | Retail Store
53 2 $6.333500) Retail Store
7 3 10400311 Retail Store
B 4 §7 722899 Retail Store
[} w
|/ v |\ Data View £ variable view f |< >

m Cases are added to the active dataset in the order in which the source data files are
specified on the ADD FILES command; all of the cases from catalog.sav appear
first, followed by all of the cases from retail.sav.

® The IN subcommand after the FILE subcommand for retail.sav creates a new
variable named Division in the merged dataset, with a value of 1 for cases that
come from retail.sav and a value of 0 for cases that come from catalog.sav. (If
the IN subcommand was placed immediately after the FILE subcommand for
catalog.sav, the values would be reversed.)

B The VALUE LABELS command provides descriptive labels for the Division values
of 0 and 1, identifying the division for each case in the merged dataset.

Example

Now that we’ve had a good laugh over the likelihood that all of the files have the
exact same structure with the exact same variable names, let’s look at a more realistic
example. What if the revenue variable had a different name in one of the files and one
of the files contained additional variables not present in the other files being merged?

*add_files2.sps.

first throw some curves into the data.
GET FILE = 'c:\examples\data\catalog.sav'.
RENAME VARIABLES (Revenue=Sales).

DATASET NAME catalog.

GET FILE = 'c:\examples\data\retail.sav'.
COMPUTE ExtraVar = 9.

EXECUTE.

72

Chapter 4

DATASET NAME retail.
show default behavior.

ADD FILES
/FILE = 'catalog'
/FILE = 'retail'
/IN = Division.
EXECUTE.

***now treat Sales

and Revenue as same variable***,

***and drop ExtraVar from the merged filex**,

ADD FILES
/FILE = 'catalog'
/RENAME (Sales
/FILE = 'retail'

/IN = Division
/DROP ExtraVar
/BY Region.
EXECUTE.

= Revenue)

® All of the commands prior to the first ADD FILES command simply modify the
original data files to contain minor variations—Revenue is changed to Sales in one
data file, and an extra variable, ExtraVar, is added to the other data file.

m The first ADD FILES command is similar to the one in the previous example
and shows the default behavior if nonmatching variable names and extraneous
variables are not accounted for—the merged dataset has five variables instead
of three, and it also has a lot of missing data. Sales and Revenue are treated as
different variables, resulting in half of the cases having values for Sales and half of
the cases having values for Revenue—and cases from the second data file have

values for ExtraVar,

but cases from the first data file do not, since this variable

does not exist in that file.

73

File Operations

Figure 4-4
Probably not what you want when you add cases from another file
%) *Untitled3 [] - SPSS Data Editor =Jo/Ed
File Edit “iew [Data Transform Analyze Graphs Uklities Add-ons Window Help
1 : Region 1
Fegion Sales | Revenue | Ewxtravar | Division | LS
1) 1] $1234867 0
2 2 F3456789]
3 3 §2345678]
4 4 5678910 . .]
5 1 F8,212 457 5.00 1
4 2 F5,333 500 5.00 1
7 3 10400311 5.00 1
& 4 . b7 722 809 3.00 1
2 v
4+ |\ Data View £ variahle View f | < >

® In the second ADD FILES command, the RENAME subcommand after the FILE
subcommand for catalog will treat the variable Sales as if its name were Revenue,
so the variable name will match the corresponding variable in retail.

B The DROP subcommand following the FILE subcommand for temp2.sav (and
the associated IN subcommand) will exclude ExtraVar from the merged dataset.
(The DROP subcommand must come after the FILE subcommand for the file that
contains the variables to be excluded.)

B The BY subcommand adds cases to the merged data file in ascending order of
values of the variable Region instead of adding cases in file order—but this
requires that both files already be sorted in the same order of the BY variable.

74

Chapter 4
Figure 4-5
Cases added in order of Region variable instead of file order
%] *Untitledd [] - SPSS Data Editor ==
File Edit “iew Data Transform Analyze Graphs Utlities Add-ons Window Help
10 : Region
Region | Revenue | Division | var LI
1 1 $1 234 567 0
2 1 55 212 457 1
3 2 $3 456 789 0
4 2 $6 333 500 1
5 3 52 345 673 0
B 3 10,400 311 1
7 4 ¥ E7E 210 0
& 4 57722899 1
9 b
4/ v |\Data View £ variahle View f < >

Updating Data Files by Merging New Values from Transaction Files

You can use the UPDATE command to replace values in a master file with updated
values recorded in one or more files called transaction files.

*update.sps.

GET FILE = 'c:\examples\data\update_transaction.sav'.
SORT CASE BY id.

DATASET NAME transaction.

GET FILE = 'c:\examples\data\update_master.sav'.

SORT CASES BY id.

UPDATE /FILE = *

/FILE = transaction
/IN = updated
/BY id.
EXECUTE.

B SORT CASES BY idis used to sort both files in the same case order. Cases are
updated sequentially, so both files must be sorted in the same order.

B The first FILE subcommand on the UPDATE command specifies the master data
file. In this example, FILE = * specifies the active dataset.

® The second FILE subcommand specifies the dataset name assigned to the
transaction file.

75

File Operations

B The IN subcommand immediately following the second FILE subcommand
creates a new variable called updated in the master data file; this variable will
have a value of 1 for any cases with updated values and a value of 0 for cases
that have not changed.

® The BY subcommand matches cases by id. This subcommand is required.
Transaction files often contain only a subset of cases, and a key variable is
necessary to match cases in the two files.

Figure 4-6
Original file, transaction file, and update file
.2} *update_master.sav [] - SP55 Data Editor E]@ |
Fle Edt View Data Transtorm Anc @) UntitledS [transaction] - SPSS Data Editor =Jo&d
9:id File Edit Yiew Data Transform Analyze Graphs Utiities Add-ons Window Help
id | salary | department] ER
1(101| 33000 2
S0z 47250 3 id | salary | departrent| var var war var
=103 22500 1 1(103| 25000 .
4104 | 122150 1 3201 101200 2
5201 SB020 2
6l202] 53450 3 Q' pdate_t ter.sav[] - SPSS Data Editor E]@
7 File Edit Wiew Data Transform Analyze Graphs Utiities Add-ons Window Help
& 9:id
< v \DataView A vVariable View f -
id | salary |departrment] updated | var var ¥l
IR 11101| 33000 2]
20102 47250 3 1]
3|103| 25000 1 1
4104 | 122150 1 1]
5|201| 101200 2 1
B|202| 53450 3]
7 b
< v \DataView f variable View f |< >

B The salary values for the cases with the id values of 103 and 201 are both updated.

B The department value for case 201 is updated, but the department value for case
103 is not updated. System-missing values in the transaction files do not overwrite
existing values in the master file, so the transaction files can contain partial
information for each case.

76

Chapter 4
Aggregating Data

The AGGREGATE command creates a new dataset where each case represents one
or more cases from the original dataset. You can save the aggregated data to a new
dataset or replace the active dataset with aggregated data. You can also append the
aggregated results as new variables to the current active dataset.

Example

In this example, information was collected for every person living in a selected sample
of households. In addition to information for each individual, each case contains

a variable that identifies the household. You can change the unit of analysis from
individuals to households by aggregating the data based on the value of the household
ID variable.

*aggregatel.sps.
create some sample data.
DATA LIST FREE (" ")
/ID_household (F3) ID_person (F2) Income (F8).
BEGIN DATA
101 1 12345 101 2 47321 101 3 500 101 4 0
102 1 77233 102 2 0
103 1 19010 103 2 98277 103 3 0
104 1 101244
END DATA.
now aggregate based on household id.
AGGREGATE
/OUTFILE = * MODE = REPLACE
/BREAK = ID_household
/Household Income = SUM(Income)
/Household_Size = N.

B OUTFILE = * MODE = REPLACE replaces the active dataset with the
aggregated data.

H BREAK = ID_household combines cases based on the value of the household
ID variable.

B Household_Income = SUM(Income) creates a new variable in the aggregated
dataset that is the total income for each household.

B Household_Size = N creates a new variable in the aggregated dataset that is
the number of original cases in each aggregated case.

77

File Operations

Figure 4-7

Original and aggregated data

B *Untitled6 [] - SPSS Data Editor =]o)Ee

File Edit ‘iew Data Transform Analyze Graphs Ukilities Add-ons Window Help
[12+ ID_household
D household | 1D person | Incomme | war 1 war | -

1 101 1] 12345 '8 *Untitled7 [] - SPSS Data Editor =2/
2 101 2 47321 File Edit ‘iew Data Transform Analyze Graphs Utiities Add-ons ‘Window Help
B 101 3 500
3 o1 1 o[/18+ ID_househald |
5 102 1 77233 ID househald | Househald Income | Household Size | o
B 102 2 0 1 101 60166.00 4| =
7 103 1 19010 2 102 77233.00 2
5 103 2 98277 3 103 117287.00 3
9 103 3 i} 4 104 101244.00 1
10 104 1] 01244 :

< v \DataView £ Variable View / =

w
< v \\Data View £ variable view f sl [2]]
Example

You can also use MODE = ADDVARIABLES to add group summary information to the
original data file. For example, you could create two new variables in the original data
file that contain the number of people in the household and the per capita income for
the household (total income divided by number of people in the household).

*aggregate2.sps.
DATA LIST FREE (" ")
/ID_household (F3) ID_person (F2) Income (F8).

BEGIN
101 1
102 1
103 1
104 1

DATA

12345 101 2 47321 101 3 500 101 4 O
77233 102 2 0

19010 103 2 98277 103 3 O

101244

END DATA.

AGGREGATE
/OUTFILE = * MODE = ADDVARIABLES
/BREAK = ID_household
/per_capita_Income = MEAN (Income)
/Household_Size = N.

B As with the previous example, OUTFILE = * specifies the active dataset as the
target for the aggregated results.

®m Instead of replacing the original data with aggregated data, MODE =
ADDVARIABLES will add aggregated results as new variables to the active dataset.

78

Chapter 4

m As with the previous example, cases will be aggregated based on the household
ID value.

® The MEAN function will calculate the per capita household incomes.

Figure 4-8
Aggregate summary data added to original data
&) “Untitled8 [] - SPSS Data Editor =/ oEd
File Edit Wiew Data Transform Analyze Graphs Utilities Add-ons Window Help
15 : ID_household
ID_hDusehuld‘ ID_person | Income |per_capita_| Housghold‘{ val:“:
Income Size
1 101 1 12345| 1504180 4
2 101 2 47321 15041.50 4
) 101 3 00| 15041.80 4
4 101 4 0 148041.80 4
5 102 1 77233 38E816.50 2
5] 102 2 0 38616.50 2
7 103 1 19010 39095 67 3
B 103 2 98277 | 30095 67 3
9 103 3 0 3909567 3
10 104 1) 101244 1012440 1 A
11 . -
</ » |\ Data View £ Variahle View f [« >

Aggregate Summary Functions

The new variables created when you aggregate a data file can be based on a wide
variety of numeric and statistical functions applied to each group of cases defined by
the BREAK variables, including:

® Number of cases in each group

Sum, mean, median, and standard deviation

Minimum, maximum, and range

Percentage of cases between, above, and/or below specified values

First and last nonmissing value in each group

Number of missing values in each group

For a complete list of aggregate functions, see the AGGREGATE command in the SPSS
Command Syntax Reference.

79

File Operations

Weighting Data

The WEIGHT command simulates case replication by treating each case as if it were
actually the number of cases indicated by the value of the weight variable. You can use
a weight variable to adjust the distribution of cases to more accurately reflect the larger
population or to simulate raw data from aggregated data.

Example

A sample data file contains 52% males and 48% females, but you know that in
the larger population the real distribution is 49% males and 51% females. You can
compute and apply a weight variable to simulate this distribution.

*weight_sample.sps.

create sample data of 52 males, 48 females.
NEW FILE.

INPUT PROGRAM.

- STRING gender (A6).

- LOOP #I =1 TO 100.

- DO IF #I <= 52.

- COMPUTE gender='Male'.

- ELSE.

- COMPUTE Gender='Female'.

- END TIF.

- COMPUTE AgeCategory = trunc(uniform(3)+1).
- END CASE.

- END LOOP.

- END FILE.

END INPUT PROGRAM.

FREQUENCIES VARIABLES=gender AgeCategory.
create and apply weightvar.

to simulate 49 males, 51 females,
DO IF gender = 'Male’'.

- COMPUTE weightvar=49/52.

ELSE IF gender = 'Female'.

- COMPUTE weightvar=51/48.

END TF.

WEIGHT BY weightvar.

FREQUENCIES VARIABLES=gender AgeCategory.

m Everything prior to the first FREQUENCIES command simply generates a sample
dataset with 52 males and 48 females.

80

Chapter 4

m The DO IF structure sets one value of weightvar for males and a different value
for females. The formula used here is: desired proportion/observed proportion.
For males, it is 49/52 (0.94), and for females, it is 51/48 (1.06).

B The WEIGHT command weights cases by the value of weightvar, and the second
FREQUENCIES command displays the weighted distribution.

Note: In this example, the weight values have been calculated in a manner that does
not alter the total number of cases. If the weighted number of cases exceeds the
original number of cases, tests of significance are inflated; if it is smaller, they are
deflated. More flexible and reliable weighting techniques are available in the Complex
Samples add-on module.

Example

You want to calculate measures of association and/or significance tests for a
crosstabulation, but all you have to work with is the summary table, not the raw data
used to construct the table. The table looks like this:

Male Female Total
Under $50K |25 35 60
$50K+ 30 10 40
Total 55 45 100

You then read the data into SPSS, using rows, columns, and cell counts as variables;
then, use the cell count variable as a weight variable.

*weight.sps.
DATA LIST LIST /Income Gender count.
BEGIN DATA

1, 1, 25
1, 2, 35
2, 1, 30
2, 2, 10
END DATA.

VALUE LABELS
Income 1 'Under $50K' 2 'S$S50K+'
/Gender 1 'Male' 2 'Female'.

WEIGHT BY count.

CROSSTABS TABLES=Income by Gender
/STATISTICS=CC PHI.

81

File Operations

® The values for Income and Gender represent the row and column positions from
the original table, and count is the value that appears in the corresponding cell in
the table. For example, 1, 2, 35 indicates that the value in the first row, second
column is 35. (The Total row and column are not included.)

® The VALUE LABELS command assigns descriptive labels to the numeric codes for
Income and Gender. In this example, the value labels are the row and column
labels from the original table.

B The WEIGHT command weights cases by the value of count, which is the number
of cases in each cell of the original table.

® The CROSSTABS command produces a table very similar to the original and
provides statistical tests of association and significance.

Figure 4-9
Crosstabulation and significance tests for reconstructed table

Income * Gender Crosstabulation

Gender
hale Femalz Tital
Income Under $50K by 35 =]
a0+ a0 10 40
Total 55 45 100

Symmetric Measures

Walue Appro. Sig.
Patminl by Phi -.328 nm
Mominzl Cramer's W 325 0o
Contingency Cosfficient M2 o

I of “alid Cazes 100

Changing File Structure

SPSS expects data to be organized in a certain way, and different types of analysis
may require different data structures. Since your original data can come from many
different sources, the data may require some reorganization before you can create the
reports or analyses that you want.

82

Chapter 4

Transposing Cases and Variables

You can use the FLIP command to create a new data file in which the rows and
columns in the original data file are transposed so that cases (rows) become variables
and variables (columns) become cases.

Example

Although SPSS expects cases in the rows and variables in the columns, applications

such as Excel don’t have that kind of data structure limitation. So what do you do with
an Excel file in which cases are recorded in the columns and variables are recorded in

the rows?

Figure 4-10
Excel file with cases in columns, variables in rows

EA Microsoft Excel - Aip_excel.xls
J@ File Edit View Insert Format Tools Data Wwindow Help Acrobat =8| x|
DEeEHIEGRY i@ o &= A4 @m0 -0 2
B3 | =

A | B | ¢ [b | E [F | 6 [T
|1 Mewton | Boris Kendall Dakota Jasper haguie
| 2 |ID 101 202 303 404 203 B0
| 3 |Education 12 10 16 13 14 16
| 4 |Income 25000 22300 73,500 122525 47000 32,000
| 5 |Age 2 30 41 37 29 B2
G -
44> M} Sheetl { Sheet2 f Sheetd | 4] |
Ready |1 | [| 4

Here are the commands to read the Excel spreadsheet and transpose the rows and
columns:

*flip_excel.sps.

GET DATA /TYPE=XLS
/FILE="'C:\examples\data\flip_excel.xls'
/READNAMES=0N

FLIP VARIABLES=Newton Boris Kendall Dakota Jasper Maggie
/NEWNAME=V1.

RENAME VARIABLES (CASE_LBL = Name) .

B READNAMES=ON in the GET DATA command reads the first row of the Excel
spreadsheet as variable names. Since the first cell in the first row is blank, it is
assigned a default variable name of V1.

83

File Operations

m The FLIP command creates a new active dataset in which all of the variables
specified will become cases and all cases in the file will become variables.

m The original variable names are automatically stored as values in a new variable
called CASE LBL. The subsequent RENAME VARIABLES command changes the
name of this variable to Name.

B NEWNAME=V1 uses the values of variable V'] as variable names in the transposed

data file.
Figure 4-1
Original and transposed data in Data Editor
& *Untitled2 [] - SPSS Data Editor N |[=1]<
File Edit Wiew Data Transform Analyze Graphs Utlities Add-ons Window Help
7
%1 | Mewton | Boris | Kendall | Dakota | Jasper | Maggie |
1{ID 101 202 303 404 505 B0GB
2|Education 12 10 16 18 14 16
3|Income 28000 22300 73500 122625 47000 32000
4| Age 22 30 41 7 29 B2
& “Untitled3 [] - SPSS Data Editor M |[=15
<> \Data‘\." File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help
10: Income
MName | ID | Educati0n| Income | Age | Py
1| Mewton 101.00 12.00 25000.00 2200
2|Boris 202.00 10.00 22300.00 30.00
3| Kendall 303.00 16.00 ¥3500.00 41.00
4|Dakota 404.00 18.00 122625.00 37.00
5lJagper 505.00 14.00 47000.00 29.00
G| Maggie G0B.00 16.00 32000.00 g2.00
w
< » |\ Data View A variahle View f | >

Cases to Variables

Sometimes you may need to restructure your data in a slightly more complex manner
than simply flipping rows and columns.

Many statistical techniques in SPSS are based on the assumption that cases (rows)
represent independent observations and/or that related observations are recorded in
separate variables rather than separate cases. If a data file contains groups of related

84

Chapter 4

cases, you may not be able to use the appropriate statistical techniques (for example,
the paired samples # test or repeated measures GLM) because the data are not organized
in the required fashion for those techniques.

In this example, we use a data file that is very similar to the data used in the
AGGREGATE example. For more information, see Aggregating Data on p. 76.
Information was collected for every person living in a selected sample of households.
In addition to information for each individual, each case contains a variable that
identifies the household. Cases in the same household represent related observations,
not independent observations, and we want to restructure the data file so that each
group of related cases is one case in the restructured file and new variables are created
to contain the related observations.

Figure 4-12
Data file before restructuring cases to variables
] casestovars.sav [] - SPSS Data Editor g@
File Edit Wiew Data Transform Analyze Graphs Utilities Add-ons Window Help
5
ID_household | ID_person | Income | var war P

1 101 1 12345 '_

2 101 2 47321 3

3 1m 3 500

4 102 1 77233

5 102 2 0

5 103 1 19010

7 103 2 GB277

8 104 1 101244

9 104 2 F3000

10

14 -
4 » \Data View £ Variable View f BN [#]]

The CASESTOVARS command combines the related cases and produces the new
variables.

*casestovars.sps.

GET FILE = 'c:\examples\data\casestovars.sav'.
SORT CASES BY ID_household.
CASESTOVARS

/ID = ID_household
/INDEX = ID_person
/SEPARATOR = "_"
/COUNT = famsize.
VARIABLE LABELS
Income_1 "Husband/Father Income"

85

File Operations

Income_2 "Wife/Mother Income"
Income_3 "Other Income".

SORT CASES sorts the data file by the variable that will be used to group cases
in the CASESTOVARS command. The data file must be sorted by the variable(s)
specified on the 1D subcommand of the CASESTOVARS command.

The 1D subcommand of the CASESTOVARS command indicates the variable(s) that
will be used to group cases together. In this example, all cases with the same value
for ID _household will become a single case in the restructured file.

The optional INDEX subcommand identifies the original variables that will be used
to create new variables in the restructured file. Without the INDEX subcommand,
all unique values of all non-ID variables will generate variables in the restructured
file. In this example, only values of ID person will be used to generate new
variables. Index variables can be either string or numeric. Numeric index values
must be nonmissing, positive integers; string index values cannot be blank.

The SEPARATOR subcommand specifies the character(s) that will be used to
separate original variable names and the values appended to those names for the
new variable names in the restructured file. By default, a period is used. You can
use any characters that are allowed in a valid variable name (which means the
character cannot be a space). If you do not want any separator, specify a null string
(SEPARATOR = "").

The COUNT subcommand will create a new variable that indicates the number of
original cases represented by each combined case in the restructured file.

The VARIABLE LABELS command provides descriptive labels for the new
variables in the restructured file.

86

Chapter 4
Figure 4-13
Data file after restructuring cases to variables
R “casestovars.sav [] - SPSS Data Editor g@
File Edit Miew Data Transform Analyze Graphs Ublities Add-ons Window Help
9 ID_household |
ID_household| famsize | Income 1| Income_2 | Income 3 | var | a
1 101 3 12345 47321 500 =
2 102 2 77233 0
3 103 2 19010 9527F
4 104 2 101244 53000
5
G
7
8 -
4| » |\ Data View A Variahle view f [] [#]]

Variables to Cases

The previous example turned related cases into related variables for use with statistical
techniques that compare and contrast related samples. But sometimes you may need
to do the exact opposite—convert variables that represent unrelated observations to
variables.

Example

A simple Excel file contains two columns of information: income for males and
income for females. There is no known or assumed relationship between male

and female values that are recorded in the same row; the two columns represent
independent (unrelated) observations, and we want to create cases (rows) from the
columns (variables) and create a new variable that indicates the gender for each case.

87

File Operations

Figure 4-14
Data file before restructuring variables to cases
% “Untitled4 [] - SPSS Data Editor =Jo/Ed
File Edit “iew Data Transform Analvze Graphs Utiities Add-ons Window Help
7 Malelncome
halelncame | Femalelncome | var war war ~

1 12345 47321

2 77233 0

3 19010 93277

4 101244 53000

E

B =
4 v \Data View £ variahle view f [<]] [2]]

The VARSTOCASES command creates cases from the two columns of data.

*varstocasesl.sps.
GET DATA /TYPE=XLS

/FILE = 'c:\examples\data\varstocases.xls'
/READNAMES = ON.
VARSTOCASES

/MAKE Income FROM MaleIncome FemaleIncome
/INDEX = Gender.
VALUE LABELS Gender 1 'Male' 2 'Female'.

® The MAKE subcommand creates a single income variable from the two original
income variables.

® The INDEX subcommand creates a new variable named Gender with integer values
that represent the sequential order in which the original variables are specified on
the MAKE subcommand. A value of 1 indicates that the new case came from the

original male income column, and a value of 2 indicates that the new case came
from the original female income column.

® The VALUE LABELS command provides descriptive labels for the two values
of the new Gender variable.

88

Chapter 4

Figure 4-15
Data file after restructuring variables to cases
%] “Untitled4 [] - SPSS Data Editor (=1
File Edit “ew Data Transform Analvze Graphs Uklities Add-ons Window Help
11 : Gender
Gender | Income | wvar var war ~
1 Male 12345
2 Female 47321
3 Male 77233
4 Female 0
5 Male 19010
53 Female 98277
7 Male 101244
8 Female £3000
9
1 v
4| v\ Data View £ variahle View f < >
Example

In this example, the original data contain separate variables for two measures taken at
three separate times for each case. This is the correct data structure for most procedures
that compare related observations. However, there is one important exception: linear
mixed models (available in the Advanced Statistics add-on module) requires a data
structure in which related observations are recorded as separate cases.

89

File Operations

Figure 4-16
Related observations recorded as separate variables
B8] varstocases.sav [] - SPSS Data Editor E]@
File Edit “iew Data Transform Analyze Graphs Ublities Add-ons Window Help J
12:1D Wisible: 8 o
D | Age | %1 Timel | 1 Tirme2 | %1 Time3 | %2 Timel | v2 Time2 | 2 Timed | (&
11 1 35 1 3 4 3 1 2
21 2 47 3 5 10 12 15 9
3l 3m 25 1 2 2 4 1 1
41 4m 3o =} 5 = 10 4 7
50 &1 a5 10 11 12 20 =2 14
G| G01 70 15 16 14 34 a7 s
717 19 3 2 2 o 4 2
g a1 42 9 0 12 12 10 9
=1 = A3 12 12 18 32 27 2a
10 1001 > 2 2 2 3 3 3
14 v
|/ +|\Data View } "ariahle View f | 2]

*varstocases2.sps.
GET FILE = 'c:\examples\data\varstocases.sav'.
VARSTOCASES /MAKE V1 FROM V1_Timel V1_Time2 V1_Time3
/MAKE V2 FROM V2_Timel V2_Time2 V2_Time3
/INDEX = Time
/KEEP = ID Age.

® The two MAKE subcommands create two variables, one for each group of three
related variables.

® The INDEX subcommand creates a variable named 7ime that indicates the
sequential order of the original variables used to create the cases, as specified on
the MAKE subcommand.

® The KEEP subcommand retains the original variables /D and Age.

90

Chapter 4

Figure 4-17
Related variables restructured into cases
arstocases.sav [] - ata Editor
File Edit Wiew Data Transform Analyze Graphs Utilities Add-ons Window Help
341D |
ID | Age Tima W1 W2 war var .|
1] 101 35 1 1 3 o
20 1) 35 2 3 1 =
3 1 35 3 4 2
41 201 47 1 3 12 'm
al 201 47 2 al 15
Gl 201 47 3 10 9
7l 30 25 1 1 4
gl 30 25 2 2 1
af 3| 25 3 2 1
10 401 39 1 g 10
11 401 39 2 A 4
12| 401 39 3 9 7
13| 501 A& 1 10 20
14| 501 &5 2 11 22
15| 501 &5 3 12 14
16| B01| 70 1 15 35 |
4+ '\ DataView A Variahle View / E3N

Chapter

Variable and File Properties

In addition to the basic data type (numeric, string, date, etc.), you can assign other
properties that describe the variables and their associated values. You can also
define properties that apply to the entire data file. In a sense, these properties can be
considered metadata—data that describe the data. These properties are automatically
saved with the data when you save the data as an SPSS-format data file.

Variable Properties

You can use variable attributes to provide descriptive information about data and
control how data are treated in analyses, charts, and reports.

Bm Variable labels and value labels provide descriptive information that make it easier
to understand your data and results.

® Missing value definitions and measurement level affect how variables and specific
data values are treated by statistical and charting procedures.

Example

*define_variables.sps.

DATA LIST LIST
/id (F3) Interview_date (ADATE10) Age (F3) Gender (Al)
Income_category (Fl) Religion (Fl) opinionl to opinion4d (4F1).

BEGIN DATA

150 11/1/2002 55 m 3 4 51 3 1

272 10/24/02 25 £ 3 9 2 3 4 3

299 10-24-02 900 £ 8 4 2 9 3 4

227 10/29/2002 62 m 9 4 2 3 5 3
216 10/26/2002 39 F 7 3 9 3 21
228 10/30/2002 24 £ 4 2 3 515
333 10/29/2002 30 m 2 3 51 2 3
385 10/24/2002 23 m 4 4 3 3 9 2
170 10/21/2002 29 £ 4 2 2 2 2 5
391 10/21/2002 58 m 1 3 51 5 3

END DATA.
FREQUENCIES VARIABLES=opinion3 Income_Category.
VARIABLE LABELS

91

92

Chapter 5

Interview_date "Interview date"
Income_category "Income category"
opinionl "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price is reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".
VALUE LABELS
Gender "m" "Male" "f" "Female"
/Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"
7 "Refused to answer" 8 "Don't know" 9 "No answer"
/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish" 4 "Other" 9 "No answer"
/opinionl TO opinion4 1 "Strongly Disagree" 2 "Disagree" 3 "Ambivalent"
4 "Agree" 5 "Strongly Agree" 9 "No answer".
MISSING VALUES
Income_category (7, 8, 9)
Religion opinionl TO opiniond (9).
VARIABLE LEVEL
Income_category, opinionl to opinion4 (ORDINAL)
Religion (NOMINAL) .
FREQUENCIES VARIABLES=opinion3 Income_Category.

Figure 5-1
Frequency tables before assigning variable properties
opinion3

Cumulative

Freguency Percert “alid Percert Percent
walicd 1 1 100 1000 100
2 3 300 300 400
3 2 200 200 500
4 1 100 100 700
5 2 200 200 q0.0
9 1 100 100 100.0

Total 10 100.0 100.0
Income_category

Cumulstive

Frequency Percert “alid Percert Percent
Walicl 1 1 100 100 100
2 1 100 100 200
3 2 200 200 400
4 3 300 300 700
7 1 100 100 500
g 1 100 100 0.0
9 1 100 1000 100.0

Total 10 100.0 100.0

B The first FREQUENCIES command, run before any variable properties are assigned,
produces the preceding frequency tables.

m For both variables in the two tables, the actual numeric values do not mean a
great deal by themselves, since the numbers are really just codes that represent
categorical information.

93

Variable and File Properties

m For opinion3, the variable name itself does not convey any particularly useful
information either.

m The fact that the reported values for opinion3 go from 1 to 5 and then jump to 9
may mean something, but you really cannot tell what.

Figure 5-2
Frequency tables after assigning variable properties

Price is reasonable

curmullative
Frecquency Percent “alid Percent Percert
Yalid Strongly Disagree 1 10.0 114 111
Disaaree 3 300 333 44 .4
Ambivalent 2 200 22 BE.T
Aoree 1 100 111 T7a
Strongly Agree 2 200 222 100.0
Tatal] Q0.0 100.0
Missing Mo anzwer 1 100
Tatal 10 100.0
Income category
Cumulative
Freqguency Percent “alidd Percent Percert
Walidd Under 25k 1 100 143 143
25K to 49K 1 100 143 286
0K to T4k 2 200 286 571
Tak+ 3 300 4249 100.0
Tatal 7 700 100.0
Mizsing Refused to answer 1 100
Don't knoey 1 100
Mo answer 1 100
Tatal 3 300
Tatal 10 100.0

B The second FREQUENCIES command is exactly the same as the first, except this
time it is run after a number of properties have been assigned to the variables.

m By default, any defined variable labels and value labels are displayed in output
instead of variable names and data values. You can also choose to display variable
names and/or data values or to display both names/values and variable and value
labels. (See the SET command and the TVARS and TNUMBERS subcommands in
the SPSS Command Syntax Reference.)

94

Chapter 5

m User-defined missing values are flagged for special handling. Many procedures
and computations automatically exclude user-defined missing values. In this
example, missing values are displayed separately and are not included in the
computation of Valid Percent or Cumulative Percent.

m [f you save the data as an SPSS-format data file, variable labels, value labels,
missing values, and other variable properties are automatically saved with the

data file. You do not need to reassign variable properties every time you open
the data file.

Variable Labels

The VARIABLE LABELS command provides descriptive labels up to 255 bytes.
Variable names can be up to 64 bytes, but variable names cannot contain spaces
and cannot contain certain characters. For more information, see “Variables” in the
“Universals” section of the SPSS Command Syntax Reference.

VARIABLE LABELS
Interview_date "Interview date"
Income_category "Income category"
opinionl "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price is reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".

m The variable labels Interview date and Income category do not provide any
additional information, but their appearance in the output is better than the variable
names with underscores where spaces would normally be.

®m For the four opinion variables, the descriptive variable labels are more informative
than the generic variable names.

Value Labels

You can use the VALUE LABELS command to assign descriptive labels for each
value of a variable. This is particularly useful if your data file uses numeric codes to
represent non-numeric categories. For example, income_category uses the codes 1
through 4 to represent different income ranges, and the four opinion variables use the
codes 1 through 5 to represent level of agreement/disagreement.

VALUE LABELS
Gender "m" "Male" "f" "Female"

95

Missing

Variable and File Properties

/Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"

7 "Refused to answer" 8 "Don't know" 9 "No answer"

/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish" 4 "Other" 9 "No answer"
/opinionl TO opinion4 1 "Strongly Disagree" 2 "Disagree" 3 "Ambivalent"
4 "Agree" 5 "Strongly Agree" 9 "No answer".

Value labels can be up to 120 bytes.

For string variables, both the values and the labels need to be enclosed in quotes.
Also, remember that string values are case sensitive; "£" "Female" is not the
same as "F" "Female".

You cannot assign value labels to long string variables (string variables longer
than eight characters).

Use ADD VALUE LABELS to define additional value labels without deleting
existing value labels.

Values

The MISSING VALUES command identifies specified data values as user-missing.
It is often useful to know why information is missing. For example, you might want
to distinguish between data that is missing because a respondent refused to answer
and data that is missing because the question did not apply to that respondent. Data
values specified as user-missing are flagged for special treatment and are excluded
from most calculations.

MISSING VALUES

Income_category (7, 8, 9)
Religion opinionl TO opiniond4 (9).

You can assign up to three discrete (individual) missing values, a range of missing
values, or a range plus one discrete value.

Ranges can be specified only for numeric variables.

You cannot assign missing values to long string variables (string variables longer
than eight characters).

Measurement Level

You can assign measurement levels (nominal, ordinal, scale) to variables with the
VARIABLE LEVEL command.

96

Chapter 5

VARIABLE LEVEL
Income_category, opinionl to opinion4 (ORDINAL)
Religion (NOMINAL) .

B By default, all new string variables are assigned a nominal measurement level, and
all new numeric variables are assigned a scale measurement level. In our example,
there is no need to explicitly specify a measurement level for Interview date or
Gender, since they already have the appropriate measurement levels (scale and
nominal, respectively).

® The numeric opinion variables are assigned the ordinal measurement level because
there is a meaningful order to the categories.

B The numeric variable Religion is assigned the nominal measurement level because
there is no meaningful order of religious affiliation. No religion is “higher” or
“lower” than another religion.

For many commands, the defined measurement level has no effect on the results. For
a few commands, however, the defined measurement level can make a difference in
the results and/or available options. These commands include: GGRAPH, TGRAPH,
XGRAPH, CTABLES (Tables option), and TREE (Classification Trees option).

Custom Variable Properties

You can use the VARIABLE ATTRIBUTE command to create and assign custom
variable attributes.

Example

*variable_attributes.sps.

DATA LIST LIST /ID Age Region Incomel Income2 Income3.

BEGIN DATA

1 27 1 35500 42700 40250

2 34 2 72300 75420 81000

3 50 1 85400 82900 84350

END DATA.

COMPUTE AvgIncome=MEAN (Incomel, Income2, Income3).